Photochemical Synthesis of $\mathbf{2 , 3}$-Homoindoles

By Masazumi Ikeda,* Saeko Matsugashita, Fujio Tabusa, Hiroyuki Ishibashi, and Yasumitsu Tamura (Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka, Japan)

Summary Irradiation of ethyl 2-cyano-4-methyl-1,2-di-hydroquinoline-1-carboxylates in ethanol gives stereospecifically ethyl endo-1-cyano-6b-methyl-1,1a,2,6b-tetrahydrocycloprop $[b]$ indole-2-carboxylates (2,3-homoindoles) in $59-61 \%$ yields, which are shown to be useful synthetic intermediates for indole derivatives.

Previously we reported ${ }^{1}$ that irradiation of ethyl 2-cyano-1,2-dihydroquinoline-1-carboxylates (Reissert compounds) gives either allenic compounds or ethanol adducts depending upon the solvent used. The allenic compounds can be transformed into indole derivatives. We now report a variation of the reaction course by the introduction of a

(Ia) $\mathrm{R}=\mathrm{H}$
(Ib) $\mathrm{R}=\mathrm{OMe}$
(III) $R=H$
(IIb) $R=\mathrm{OMe}$
PV $\begin{array}{r}\text { V in } \mathrm{Me}_{2} \mathrm{CO} \\ \mathrm{Ha}\end{array}$

(III) $R=H$
(IIIb) $\mathrm{R}=\mathrm{OMe}$

(V)

methyl group at the 4 position of the Reissert compounds; namely stereospecific formation of 2,3 -homoindoles (II). ${ }^{\mathbf{3}}$
When the dihydroquinoline (Ia), \dagger was irradiated \ddagger in ether two products (IIa) (10%), m.p. $104-105^{\circ}, \S$ and (IV) (32%), m.p. $88-89^{\circ}$, were obtained (t.l.c.). Irradiation of (Ia) in ethanol gave exclusively (IIa) (61%).
The structure of (IIa) was determined from its mass, u.v., i.r., and n.m.r. spectra. Chemical confirmation was obtained by alkaline hydrolysis ($\mathrm{KOH}-\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}, 110^{\circ}$) of (IIa) to (V) (72%), m.p. $99-100^{\circ}$, and by ring opening of (IIa) (conc. HCl , reflux) to (IV) $(42 \%$) or ($\mathrm{HCl}-\mathrm{EtOH}$, r.t.) to (VI) $\left(90 \%\right.$), m.p. $151-153^{\circ}$, which were hydrolysed ($\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{MeOH}$) to (VII) (71%), m.p. $99-101^{\circ}$, and the known compound (VIII) (52%), ${ }^{3}$ respectively. This result also confirmed the structure of the photoproduct (IV). The stereochemistry of the cyclopropane ring in (IIa) was determined by comparison of the chemical shift ${ }^{4}$ of Ha [$\tau 8.28$ for (IIa) and 8.88 for (IIIa)] and the coupling constant $t^{4 \mathrm{a}}$ between Ha and $\mathrm{Hb}\left[J_{\mathrm{a}, \mathrm{b}} 6 \mathrm{~Hz}\right.$ for (IIa) and 2.5 Hz for (IIIa)] with those of the exo-isomer (IIIa), m.p. 98-99 ${ }^{\circ}$, which was isolated from an equilibrium mixture (IIa : IIIa $=$ ca. 2:3) obtained by the acetone-sensitised photolysis of (IIa). 1
Similarly, irradiation of (Ib) in ethanol gave (IIb), m.p. $124-125^{\circ}(59 \%)$, which was also transformed into (IIIb), m.p. 119-120 .

The formation of (II) may be visualized as analogous to the photochemical transformation of 1,2 -dihydronaphthalenes into benzobicyclo $[3,1,0]$ hexenes ${ }^{5}$ and the formation of (IV) is analogous to the reaction described previously. ${ }^{1}$
(Received, 19th February 1974; Com. 217.)
\dagger Reissert compounds (Ia,b) were prepared according to the method described by F. D. Popp, L. E. Katz, C. W. Klinowski, and J. M. Wefer, J. Org. Chem., 1968, 33, 4447.
\ddagger Irradiation was carried out with a 350 W high-pressure mercury lamp in a Pyrex vessel until all of the starting material had disappeared as determined by t.l.c.
§ All new compounds gave satisfactory elemental and spectral analyses.
II Both (IIa) and (IIIa) are stable on irradiation in ether or ethanol.
${ }^{1}$ M. Ikeda, S. Matsugashita, H. Ishibashi, and Y. Tamura, J.C.S. Chem. Comm., 1973, 922.
${ }^{2}$ The only reported example in this class of compounds is limited to ethyl 2 -benzoyl-1,1a,2,6b-tetrahydrocycloprop[b]indole-1carboxylates which have been synthesised by the reaction of 1-benzoylindoles with ethyl diazoacetate in low yields: J. W. Welstead, U.S.P. 2,103,295/1970 (Chem. Abs., 1971, 75, 98,444).
${ }^{8}$ H.-H. Stroh and H. Beitz, Annalen, 1966, 700, 78.
${ }^{4}$ (a) V. Rautenstrauch and F. Wingler, Tetrahedron Letters, 1965, 4703 ; (b) F. W. Fowler, Chem. Comm., $1969,1359$.
${ }^{5}$ (a) H. Heimgarter, H.-J. Hansen, and H. Schmid, Helv. Chim. Acta, 1972, 55, 3005 and references therein; (b) D. A. Seeley, J. Amer. Chem. Soc., 1972, 94, 4378.

