Biosynthesis of Phytoecdysone: Incorporation of 2β , 3β , 14α -Trihydroxy- 5β -cholest-7-en-6-one into β -Ecdysone and Inokosterone in *Achyranthes fauriei*

By YUTAKI TOMITA* and EIICHI SAKURAI

(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan)

Summary 2β , 3β , 14α -Trihydroxy- 5β - $[3\alpha$ - $^{3}H_{1}]$ cholest-7-en-6-one was incorporated into both β -ecdysone and inokosterone, equally; thus hydroxylation of the side chain of phytoecdysone occurs after formation of the A-B ring system.

A NUMBER of closely related compounds possessing insect moulting hormone activity are widely distributed in the plant kingdom.¹ Though studies on the biosynthesis of phytoecdysone have been carried out² and some precursors for ecdysone in insects have been reported,³ the detailed biosynthetic pathway has not yet been elucidated.

We report here the incorporation of 2β , 3β , 14α -trihydroxy- 5β -cholest-7-en-6-one (1) into β -ecdysone (2) and inokosterone (3). For this study compound (1) was labelled with tritium in the 3α -position in the following way, since retention of the tritium in biosynthesis can be expected after formation of the A-B cis ring system.

 2β -Acetoxy- 3β -hydroxy- 5α -cholest-7-en-6-one⁴,⁵ (4) was oxidized with Jones' reagent to give the corresponding ketone (5) which was reduced with tritiated sodium borohydride (1 equiv.) in ethanol to the corresponding alcohol. 2β -Acetoxy- 3β -hydroxy- 5α -[3α - $^{3}H_{1}$]cholest-7-en-6-one (6) was isolated in pure form by repeated preparative t.l.c. on silica gel plates (developed with benzene-acetone, 4:1). Oxidation of the acetate of (6) with selenium dioxide⁴ at 80° in dioxan gave 2β , 3β -diacetoxy-14 α -hydroxy- 5α -[3α - $^{3}H_{1}$]- cholest-7-en-6-one (7). Treatment of (7) with K₂CO₃ in aqueous MeOH yielded a mixture of the 5 β -compound (8) and its 5α -isomer; compound (8) was isolated in pure form by preparative t.l.c. on silica gel plates4,5 (CHCl3-EtOH, 10:1). A solution of (8) $(28.9 \times 10^6 \text{ d.p.m.})$ in acetone was applied to young leaves of Achyranthes fauriei. After one week the leaves were harvested, washed with acetone to recover unchanged material $(17.16 \times 10^6 \text{ d.p.m.})$, and then extracted with boiling water. The aqueous solution was extracted with n-butanol and β -ecdysone and inokosterone were isolated as their acetates.⁶ The acetates were recrystallized from n-hexane-EtOAc to constant specific radioactivity after addition of carrier compounds: β -ecdysone triacetate 1.78×10^{6} d.p.m./mmol (incorporation 0.055%), inokosterone tetra-acetate 1.69×10^{6} d.p.m./ mmol (incorporation 0.024%). For determination of the location of the tritium label, the β -ecdysone obtained was converted into (9),^{7,8} which was oxidized with Jones' reagent to yield a mixture of ketones.⁸ These were reduced with sodium borohydride to the corresponding alcohols, and (10) and its 3-epimer (11) were isolated in pure form by repeated preparative t.l.c. (benzene-EtOAc, 6:4): (10) 0.29×10^5 d.p.m./mmol, (11) 0.37×10^5 d.p.m./mmol. Thus ca. 80-84% of the tritium was in the 3α - position of β -ecdysone. These results indicate that 2β , 3β , 14α -trihydroxy-5 β -cholest-7-en-6-one is a precursor for β -ecdysone and inokosterone, and that hydroxylation of the side chain occurs after formation of the A-B ring system in phytoecdysone biosynthesis.

(Received, 13th March 1974; Com. 289.)

¹ H. Hikino and Y. Hikino, Prog. Chem. Org. Natural Products, 1970, 28, 256.

- ^a H. HIKIDO and Y. HIKIDO, Frog. Chem. Org. Natural Products, 1970, 28, 250.
 ^a H. H. Sauer, R. D. Bennett, and E. Heftmann, Phytochem., 1968, 7, 2027; H. Hikino, H. Jin, and T. Takemoto, *ibid.*, 1970, 9, 367; I. F. Cook, J. G. Lloyd-Jones, H. H. Rees, and T. W. Goodwin, Biochem. J., 1973, 136, 135.
 ^a M. N. Galbraith, D. H. S. Horn, and E. J. Middleton, J.C.S. Chem. Comm., 1973, 203.
 ⁴ M. J. Thompson, W. E. Robbins, J. N. Kaplanis, C. F. Cohen, and S. M. Lancaster, Steroids, 1970, 16, 85.
 ⁵ A. Furlenmeier, A. Fürst, A. Langemann, G. Waldvoge, U. Kerb, P. Hocks, and R. Wiechert, Helv. Chim. Acta, 1966, 49, 1591.
 ⁶ T. Takemoto S. Ogawa and N. Nishimoto, Yakugaku Zasshi, 1967, 87, 325, 1469, 1474.
 ⁷ M. N. Galbraith and D. H. S. Horn, Austral J. Chem. 1969, 22, 1045.

 - ⁷ M. N. Galbraith and D. H. S. Horn, Austral. J. Chem., 1969, 22, 1045.
 - ⁸ J. G. Lloyd-Jones, H. H. Rees, and T. W. Goodwin, Phytochem., 1973, 12, 569.