## Potassium 3-Aminopropylamide. A Novel Alkamide Superbase of Exceptional Reactivity

By Charles Allan Brown

(Baker Chemistry Laboratory, Cornell University, Ithaca, New York, 14853)

Summary Potassium 3-aminopropylamide, a new, readily prepared superbase, is highly soluble in and stable toward excess amine, extremely reactive in a variety of prototropic processes, and only slightly aggregated even in 1.0 m solution.

Alkali metal alkamides represent the strongest heteroatom bases known and are exceeded in equilibrium basicity¹ only by metal alkyls. Of these base systems, only the lithium derivatives have found extensive use; heavier metal alkamides are reported far less frequently.

Potassium 3-aminopropylamide (KAPA) is a new, extremely reactive superbase for prototropic reactions with marked advantages over previous systems. It is readily prepared by direct reaction of KH <sup>2</sup> with excess amine, the only by-product being H<sub>2</sub>. It is stable toward, and highly soluble (>1.5m) in, excess amine, and shows little decrease in specific activity due to aggregation, <sup>3</sup> even at high concentration. Furthermore, the parent amine is a good solvent for unsaturated and aromatic hydrocarbons, is easily removed from products by acidic or neutral extraction, and is readily available commercially. Finally, examination of models shows that a chelated or internally solvated structure of the amide (I) is highly feasible and is geometrically quite favourable for concerted difunctional mechanisms.<sup>4</sup>

$$H_{N}^{\square} \parallel^{+} K \cdot \cdot \cdot \cdot N H_{2}$$
(I)

The exceptional reactivity of KAPA is readily seen in anionic alkene isomerization<sup>5</sup> and protodedeuteriation.<sup>6</sup> KAPA is  $10^5$ — $10^6$  times as eactive as potassium tertbutoxide in dimethylsulphoxide, a system generally used in alkene isomerization; and  $10^3$ — $10^4$  times as reactive as lithium 2-aminoethylamide <sup>5c</sup>,d in ethylenediamine.† In the exchange of benzene C–D bonds, only caesium cyclohexylamide in cyclohexylamine was comparable in activity; this base is both less soluble and considerably less convenient to prepare. A comparison of properties is listed in the Table.

|                                                      | TABLE                                                           |                     |              |
|------------------------------------------------------|-----------------------------------------------------------------|---------------------|--------------|
|                                                      |                                                                 | Relative reactivity |              |
|                                                      |                                                                 | Isomeris-           | <del>-</del> |
| Base                                                 | Solvent                                                         | ationa              | Exchangeb    |
| K+-NH(CH <sub>2</sub> ) <sub>3</sub> NH <sub>2</sub> | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>2</sub> NH <sub>2</sub> | 2,300               | 4,000        |
| Cs+-NHC <sub>6</sub> H <sub>11</sub>                 | $H_2NC_6H_{11}$                                                 |                     | 4,000c       |
| Li+-NHC <sub>6</sub> H <sub>11</sub>                 | $(Me_2N)_3\hat{PO}$                                             | 60a                 |              |
| $Li^{+-}NH(CH_2)_2NH_2$                              | $\dot{H}_2\dot{N}(\dot{CH}_2)_2\dot{NH}_2$                      | 10                  |              |
| K+-NH <sub>2</sub>                                   | NH <sub>3</sub>                                                 |                     | 50c          |
| Li+-NHC <sub>8</sub> H <sub>11</sub>                 | $H_2NC_6H_{11}$                                                 |                     | 1c           |
| K+=O-CMe                                             | Me <sub>s</sub> SO                                              | 0.005d              | ~0f          |

 $^{\rm a}$  Isomerization of 2,4,4-trimethyl-pent-1-ene ( $\Delta^2$  at equilibrium = 18%) at 20° with 0.65–0.70M base. Values derived from  $k\psi$ .  $k\psi$  (KAPA) = 5.5  $\times$  10-3 s<sup>-1</sup>.  $^{\rm b}$  Exchange of benzene C–D bonds at 20°. Values derived from  $k_2$ .  $k_2$  (KAPA) = 8  $\times$  10-2M<sup>-1</sup> s<sup>-1</sup>.  $^{\rm c}$  Calculated from ref. 6c—g.  $^{\rm d}$  Ref. 5a.  $^{\rm e}$  Calculated from ref. 6b.

Marked decreases in specific activity of strong bases have been observed as formal base concentration increases; these

<sup>†</sup> Ethylenediamine, unlike trimethylenediamine, undergoes complex decompositions in the presence of strong bases, yielding pyrazines. Potassium 2-aminoethylamide, for example, loses ca. 50% of its strong base activity in 30 min.

are attributed to association of the active base species; into relatively inactive ion-pair aggregates. This phenomenon is of minimal importance in KAPA; correlation of activity with formal base concentration indicates 55-75% free base species (depending upon which association model is operative<sup>3c</sup>) even at 1.0 m total concentration.

The KAPA system is very readily prepared. of KH\$ is treated with 20-25 ml of trimethylenediamine (distilled under reduced pressure from barium oxide and stored over 3A molecular sieve) at 20-25°. Hydrogen evolution commences immediately and is quantitative in 15—60 min. The solution produced is yellow but darkens rapidly with even traces of air; the darkening does not appear to affect basicity or reactivity.

In preliminary studies a variety of other strong-base induced reactions have also been carried out at 0-20° using KAPA (Equations 1, 2, 3). These reactions proceeded

2-hexyne 
$$\xrightarrow{i; \text{ KAPA}}$$
 1-hexyne (1)

KAPA

norbornene + excess  ${}^{2}H_{2} \longrightarrow [2,3,5,6-{}^{2}H_{4}]$ -

$$\lim_{n \to \infty} \frac{1}{p - \text{cymene}} + H_2 \uparrow$$
 (3)

in high yield more rapidly and under milder conditions than any previously reported. The unique combination of properties of KAPA should provide a highly useful tool for both synthetic and mechanistic applications.

(Received, 25th November 1974; Com. 1420.)

‡ The nature of the active base species is unknown. In the metal cyclohexylamide systems, the monomeric ion pair is considered the active species.3d,4c,6d

§ For detailed handling procedures, see ref. 2b.

¹ The acidities of ammonia and diethylamine are reported to be comparable to those of aryl, benzyl, and allyl protons; J. B. Hendrickson, D. J. Cram, and G. S. Hammond, 'Organic Chemistry,' McGraw-Hill, New York, 1970, p. 304; H. O. House, 'Modern Synthetic Reactions,' Benjamin, Menlo Park, Calif., 1972, p. 494; J. March, 'Advanced Organic Chemistry: Reactions, Mechanism, and Structure,'

McGraw-Hill, New York, 1968, p. 221; W. R. Heumann and L. Safarak, Canad. J. Chem., 1971, 49, 1895; W. R. Heumann, A. Bonchard, and G. Tremblay, ibid., 1967, 45, 3129.

<sup>2</sup> (a) C. A. Brown, J. Amer. Chem. Soc., 1973, 95, 982; (b) J. Org. Chem., 1974, 39, 3913.

<sup>3</sup> (a) A. Schriesheim and C. A. Rowe, Jr., J. Amer. Chem. Soc., 1962, 84, 3160; (b) A. Streitwieser, Jr., D. E. Van Sickle, and W. C. Langworthy, ibid., 1962, 84, 244; (c) A. Streitwieser, Jr., R. A. Caldwell, M. R. Granger, and P. M. Laughton, J. Phys. Chem., 1972, 48, 2012.

68, 2916.

4 Similar mechanisms have been proposed for monofunctional bases associated with solvent ('asymmetric solvation'); A Streitwieser.

4 Similar mechanisms have been proposed for monofunctional bases associated with solvent ('asymmetric solvation'); A Streitwieser.

5 Streitwieser. Ir., D. E. Van Sickle, and L. Reif,

Jr., W. C. Langworthy, and D. E. Van Sickle, J. Amer. Chem. Soc., 1962, 84, 251; A. Streitwieser, Jr., D. E. Van Sickle, and L. Reif, ibid., 1962, 84, 258; D. J. Cram, C. A. Kingsbury, and B. Rickborn, ibid., 1961, 83, 3688; for a medium ring transition state in reactions with metalated diamines, see J. H. Wotiz, P. M. Barelski, and D. F. Koster, J. Org. Chem., 1973, 38, 489.

<sup>6</sup> (a) S. Bank, J. Org. Chem., 1972, 37, 114, and references therein; (b) S. Bank, C. A. Rowe, Jr., A. Schriesheim, and L. A. Naslund, J. Amer. Chem. Soc., 1967, 89, 6897; (c) L. Reggel, S. Friedman, and I. Wender, J. Org. Chem., 1958, 23, 1136; (d) M. D. Carr, J. R. P. Clarke, and M. C. Whiting, Proc. Chem. Soc., 1963, 333; (e) A. Schriesheim, C. A. Rowe, Jr., and A. Naslund, J. Amer. Chem. Soc., 1962, 2111 1963, 85, 2111.

<sup>6</sup> (a) A. Schriesheim and R. E. Nickols, Tetrahedron Letters, 1965, 1745; (b) J. E. Hofmann, R. J. Muller, and A. Schriesheim, J. Amer, Chem. Soc., 1963, 85, 3000; (c) A. I. Shatenshtein, Adv. Phys. Org. Chem., 1963, 1, 153, and references therein; (d) A. Streitwieser, Jr., and R. A. Caldwell, J. Amer. Chem. Soc., 1965, 87, 5394; (e) M. J. Maskornick and A. Streitwieser, Jr., Tetrahedron Letters, 1972, 1625; (f) A Streitwieser, Jr., R. A. Caldwell, R. G. Lawler, and G. R. Ziegler, J. Amer. Chem. Soc., 1965, 87, 5399; (g) A. I. Shatenshtein and

. A. Israilevich, *Zhur. fiz. Khim.*, 1954, **28**, 3.

<sup>7</sup> J. H. Wotiz, R. D. Kleopfer, P. M. Barelski, C. C. Hinckley, and D. F. Koster, *J. Org. Chem.*, 1972, **37**, 1758.