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Carbon Dioxide Exchange Reactions Involving Early Transition -metal 
NN-Dimethylcarbamato Compounds : Reversible Insertion of Carbon Dioxide 

into Transition-metaLNitrogen a-Bonds 

By MALCOLM H. CHISHOLM* and MICHAEL EXTINE 
(Frick INoYganic Chemical Laboratories, Department of Chemistry, Princeton University, Princeton, New Jersey 08540) 

Sumnary  Transition-metal NN-dimethylcarbamato com- 
pounds ML*,, (where M = Ti, Zr and n = 4; M = Nb, 
Ta and n = 5) ,  W,I,*, and W(NMe,),L*,, (L* = 0, 
13CNMe,), react with 12C02 to  give ML,, W,L, and W- 
(NMe2),L3, where (L = 0,12CNA4e,), with an energy of 
activation ranging from ca. 54 & 8kJ mol-l for ZrL, t o  
ca. 96kJ mol-l for W(NMe,),L,; mixtures of ML, and 
ML*, scramble CO, in the absence of an applied CO, 
atmosphere. 

EARLY transition-metal dimethylamidesl M(NMe,) 1z (where 
M = Ti, Zr, n = 4; M = Nb, Ta, n = 5 a n d M  = W, n = 3 
and 6) react2>, with carbon dioxide to  give NN-dimethyl- 
carbamato compounds ML , except W (XMe,), which gives 
W(NMe,),L3, (where L = O2l2CNMe2). The compounds 
W(NMe,),L,, and NbL,4 have been shown to  contain six 
co-ordinate tungsten, fac-WN,O,, and eight co-ord inate 
niobium respectively. ?Ve now find that in solution all 
these compounds are labile towards CO, exchange (equa- 
tion l).  

ML*, + x12~0, + ML,L*,-, + m13c0 
+ ( x  - m)12C02 (1) 

(where L = 0,12CNMe, and L* = 0,13CNMe,) 

The reactions were carried out in dichloromethane for 
M = Zr and Ti, and in [2H,]-toluene and benzene for 
M = Nb, Ta and W. The reactions were followed by lH  
n.m.r. spectroscopy using the fact that  the 13C labelled 
ligand 0,13CNMe, shows 3J13C-H ca. 3 Hz (Figure). The 
reactions are remarkable in both their generality and lability. 
When ZrL*, was dissolved in dichloromethane and allowed 
to  react with 8 mol. equiv. of 12C0, in a sealed n.m.r. tube 
at -43 "C, its half-life was ca. 20 min. From variable 
temperature 1H n.ni.r. studies we estimate the energy of 
activation of the reaction to be ca. 54 f 8kJ mol-l for 
M = Zr. The reaction occurs with equal ease for M = Ti, 
Nb and Ta. The rate of exchange for \V(NMe,),L, is, 
however, significantly slower (EaCt ca. 96 kJ mol-l) which 
makes it more amenable to  detailed kinetic studies using the 
lH  n.m.r. technique. 

A plausible mechanism for the reaction involves an 
initial de-insertion (expulsion) of CO, from a carbamato 
ligand (equation 2).  Consistent with this proposal are the 

M(O,CNMe,) , + M(O,CNMe,) ,-,(NMe,) + CO, (2) 

following observations : 
( 1)4 Solutions of NbL, in [2H,]-toluene contain significant 
(n.m.r. detectable) concentrations of NbL,(NMe,). The 
concentration of the latter is dependent on CO, pressure. 
(2) Preliminary kinetic studies involving W (NMe,),L, 
indicate that the CO, exchange reaction is first-order in 
tungsten and ca. zero-order in CO, concentrations. 
(3) When a mixture of ZrL*, and TiL, was dissolved in 
dichlorome thane scrambling occurred (equation 3). 

FIGURE. lH n.m.r. spectra (CH,Cl,, 100MHz, 30°C), of the 
N-methyl resonances of (A) Zr(0,12CNMeEt), 6 = 2.90 p.p.m. 
(rel. Me,Si), (B) Zr(0,12CNMeEt), + 4l5CO, after 5 min, 4 J 1 a ~ - H  

3.0 Hz, (C) Zr(O,lSCNMe,), + Zr(0,12CNMeEt), showing 
scrambling of CO, between the carbamato ligands ; the O,CNMe, 
resonance is t o  low field of the 0,CNMeEt resonance. 

ZrL*, + TiL, + ZrLzL*,-, + TiL*,L4-, (3) 
Similar scrambling occurred when a mixture of ZrL*, and 
NbL, was dissolved in dichloromethane. 
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(4) A mixture of ZrL*, and Zr(0,12CNMeEt), in dichloro- 
methane scrambled CO, to give ZrIJzL*,-z and Zr(0, 
12CNMeEt),- .(0213CNMeEt) (Figure). 
(5) A mixture of ZrL4’ and NbL, reacted in dichloromethane 
to  give ZrL,&4-z and NbL5-3CL5’ where L’ = 180,12CNMe, 
(indicated by i.r. spectroscopy4). 
(6) The organic ester Me0,12CNMe2 does not react with either 
13CO, or NbL*, under comparable conditions to  those above. 

Whilst all these observations are entirely consistent with 
an initial mechanism as in equation 2 we recognize that 
our present data do not exclude all alternate mechanisms 
for the reaction. However, we believe that the most 
plausible mechanism is given in equation 2 and it  provides a 

rationale for the observation that W(NMe,),L, has the 
slowest rate of exchange. It should be noted that the dis- 
placement of CO, in the reaction between Me,SnO,CNMe, 
and CS,, which gives5 Me,SnS,CNMe,, could also proceed 
via the initial step shown in equation 2. 
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