2-Trialkylphosphonio-1,3-dithiole-4-carboxylates. Reaction of Acetylene Carboxylic Acids with Trialkylphosphine-Carbon Disulphide Zwitterions

By Charles U. Pittman, Jr. and Mitsuaki Narita (Department of Chemistry, University of Alabama, University, Alabama 35486)

Summary Acetylene carboxylic acids were treated with trialkylphosphine-carbon disulphide zwitterions to produce fair to good yields of 2-trialkylphosphonio-1,3dithiole-4-carboxylates; the zwitterionic structure of the products was established by i.r. and n.m.r. spectroscopy and from the structure of their hydrolysis products.

ELECTRON deficient or ring-strained acetylenes react with CS₂ to give a variety of complex structures including tetrathiafulvalenes.¹⁻⁴ These reactions were recently reviewed.4

We now report that propiolic acid and acetylenedicarboxylic acid rapidly react with the Bun₃P-CS₂ complex (1) to give the zwitterionic compounds (2). These reactions proceeded in tetrahydrofuran at temperatures as low as -20 to -30 °C to give the adducts (2a) (53%) and (2b) (87%) after recrystallisation from acetone. The formation of (2), instead of (3), suggests the reaction proceeded via route A (concerted one-step addition) rather than route B. A route similar to B had previously been favoured for the reaction of acetylenes with CS₂.1 The formation of (2) also contrasts with the reaction of methyl propiolate with (1) which gave 2,6- and 2,7-bis(methoxycarbonyl)tetrathiafulvalene (21%).2

Compounds (2a), m.p. 116-118 °C (decomp.), and (2b), m.p. $122\ ^{\circ}C$ (decomp.), gave C, H, P, and S analyses within 0.3% of calculated values. Their i.r. spectra exhibited CO bands in the region 1600-1590 and 1350-1340 cm⁻¹ (-CO₂-) and no bands due to ester carbonyls. The zwitterionic structure of (2) was further confirmed by alkaline (NaOH) hydrolysis of (2a) and (2b) and acidification to give substituted 1,3-dithioles (4a) and (4b), respectively. The n.m.r. spectrum of (2a) in (CD₃)₂SO consisted of peaks at δ 0.8—1.2 (9H, t, Me), 1.3—1.8 (12H, m, γ - and β -CH₂), $2\cdot 1$ — $2\cdot 7$ (6H, m, α -CH₂), $6\cdot 24$ (1H, d, CH, exchangeable with CD_3OD , J_{P-CH} 2 Hz), and 6.37 (1H, s, vinyl H). The n.m.r. spectrum of (2b) in (CD₃)₂SO also showed a singlet CH peak at δ 5.79, also exchangeable with CD₃OD, in addition to Bun peaks.

$$R - C = C - CO_{2}H + Bu_{3}^{n}P + Bu_{3}^{$$

The authors thank the Office of Naval Research and the National Science Foundation for support.

(Received, 19th August 1975; Com. 956.)

H. D. Hartzler, J. Amer. Chem. Soc., 1973, 95, 4379.
L. R. Melby, H. D. Hartzler, and W. A. Sheppard, J. Org. Chem., 1974, 39, 2456.
C. G. Krespan and D. C. England, J. Org. Chem., 1968, 33, 1850; H. D. Hartzler, J. Amer. Chem. Soc., 1971, 93, 4961; J. Nakayama, J.C.S. Chem. Comm., 1974, 166; A. Krebs and H. Kimling, Angew. Chem. Internat. Edn., 1971, 10, 509.
M. Narita and C. U. Pittman, Jr., Synthesis, in the press.