Specific Dehydrocyclisation of n-Hexane over Supported Platinum Crystallites Prepared from Platinum Carbonyl Cluster Anion Salts

By Masaru Ichikawa*

(Sagami Chemical Research Center, 4-4-1 Nishi-Onuma, Sagamihara, Kanagawa, Japan)

Summary Highly dispersed Pt-aggregates have been prepared by pyrolysis of the Pt_{15} — Pt_3 carbonyl anion salts on γ -Al₂O₃ and SiO₂ which catalyse the specific dehydrocyclisation of n-hexane.

We have tried to prepare highly dispersed Pt-crystallites by pyrolysis of well-defined Pt-cluster compounds, the particle size of which may be conveniently controlled down to <10 Å. The trigonal prismatic salts, $[{Pt_3(CO)_6}_n]^{2-}$ - $([NEt_4]^+)_2$ (n = 1-5), were prepared by Chini's method,¹ and deposited in high dispersion (0.05-1 Pt wt %) from tetrahydrofuran solutions over silica gel, γ -Al₂O₃, or Vycor glass (no. 7930) with surface area $240-380 \text{ m}^2 \text{ g}^{-1}$. The dispersed salts decomposed completely when pyrolysed in vacuo or under He or H₂ to produce stoicheiometric amounts of CO and NEt₃: [Pt₁₅(CO)₃₀][NEt₄]₂ at 150, $[Pt_9(CO)_{18}][NEt_4]_2 \text{ at } 165, \text{ and } [Pt_6(CO)_{12}][NEt_4]_2 \text{ at }$ 170 °C. Also, the terminal (2025-1980 cm⁻¹) and bridging (1870-1810 cm⁻¹) carbonyl absorptions in the i.r. spectra of the supported Pt-carbonyl cluster salts disappeared when the Al₂O₃ disc was evacuated at 180-250 °C for 0.5 h.

of n-hexane were measured between 250 and 340 °C in the presence of an excess of hydrogen (n-hexane: $H_2 = 1:10$) over the supported Pt-crystallites. For conversions of <2%, the composition of the products was determined by g.l.c. using a silicon SE-25 column at 0 °C. The dehydrogenation products (MCP + CH) were preferentially (with >75% selectivity) obtained over the Pt-aggregates prepared from Pt_{15} , Pt_{12} , Pt_9 , and Pt_6 salts on γ -Al₂O₈ and Vycor glass. The smaller Pt-aggregates deposited from $[Pt_6(CO)_{12}][NEt_4]_2$ and $[Pt_3(CO)_3(PPh_3)_4]$ on γ -Al₂O₃ resulted in the formation of methylcyclopentane with 80-94% selectivity and negligible skeletal isomerisation

of n-hexane occurred under these conditions. 2- and 3-

methylpentanes were mainly formed from the simultaneous

hydrogenolysis of the methylcyclopentane produced. It is

also of interest that the skeletal isomerisation of neopentane

proceeded, with less hydrogenolysis, over the Pt15- and

 Pt_{12} -crystallites on γ -Al₂O₃ and Vycor glass at 270-340 °C

under an excess of hydrogen. The ratio of isopentane : iso-

butane formed at lower conversion (<1%) was 5:20. In contrast, hydrocracking occurred preferentially over Pt-

crystallites prepared from smaller Pt-clusters, such as

 Pt_{6} - and Pt_{3} -carbonyls, on γ -Al₂O₃ with negligible formation of isopentane (isopentane/isobutane = 0.1 - 0.01

at 310--350 °C). The results may suggest that the smaller

Pt-aggregates prepared from the Pt-cluster compounds consist of lower-co-ordinated corner Pt atoms which

	TABLE.	Reaction of n-hexane over	the supported Pt-aggregate	catalysts; C ₆ reaction products ⁸
--	--------	---------------------------	----------------------------	--

The state leads lead by				Dispersion	Reaction temp. (°C)	2- MP	C_6 Reaction products (mol %) 2-MP 3-MP MCP CH + B			
Type of catalyst ^b					(Pt wt %)	± (/		3-MP	MCP	CH + B
[Pt ₁₅ (CO) ₃₀] [NEt ₄] ₂	• ••	••	••		0.69	295	17.2	$8 \cdot 2$	61.7	12.9
2 10(/003 2 432						320	15.6	6.4	65.7	12.3
,, d	••	••	••	••	0.12	320	21.4	12.5	58.5	7.6
$[Pt_{12}(CO)_{24}][NEt_4]_2^{c}$	••	••	••	••	0.54	275	15.2	6.8	$64 \cdot 1$	13.9
[Pt ₉ (CO) ₁₈][NEt ₄] ₂ ^c	••				0.26	320	9.6	6.4	72.8	11.2
F					0.50	3 20	11.4	$5 \cdot 2$	74.4	9.0
$[\mathrm{Pt}_6(\mathrm{CO})_{12}][\mathrm{NEt}_4]_2{}^{\mathrm{c}}$	••	••	••		0.18	320	$5 \cdot 4$	3.7	83.6	$7 \cdot 3$
					0.25	325	$5 \cdot 2$	2.6	87.0	$5 \cdot 2$
$[\operatorname{Pt}_{\boldsymbol{3}}(\operatorname{CO})_{\boldsymbol{3}}(\operatorname{PPh}_{\boldsymbol{3}})_{\boldsymbol{4}}]$	••	••	••	••	0.45	325	$3 \cdot 7$	1.7	92.6	$2 \cdot 0$

* 2-MP = 2-methylpentane, 3-MP = 3-methylpentane, MCP = methylcyclopentane, CH = cyclohexane, and B = benzene; only traces of 2,3-dimethylbutane and neohexane were detected. b The reaction was carried out after hydrogen reduction at 350 °C for 5 h and evacuation at 350 °C for 0.5 h. \circ On γ -Al₂O₃. d On Vycor glass. \circ The catalyst was prepared by hydrogen treatment at 250 °C of the dispersed [Pt₃(CO)₃(PPh₃)] on γ -Al₂O₃ and evacuation to remove the decomposition products, such as C₆H₆ and Ph₂PH.

When H₂ (50-250 Torr at 25 °C) was admitted into supported Pt-aggregates after pyrolysis in vacuo [designated here as $(Pt_3)_n$], it was found that all the Pt atoms of the dispersed Pt-crystallites displayed homogeneous hydrogen adsorption (H.A.), the stoicheiometry of H per Pt atom on γ -Al₂O₃ or SiO₂ being 1.95, 1.7, 1.5, and 1.4 for Pt₁₅, Pt_{12} , Pt_{9} , and Pt_{6} , respectively. For CO adsorption on Al_2O_3 , $CO/Pt_{total} = 0.45$, 0.37, and 0.25 for Pt_{15} , Pt_9 , and Pt_6 , respectively. Hydrogen titration (H.T.) of the oxygen adsorbed (O.A.) on the dispersed Pt-crystallites on Al₂O₃ after evacuation was measured and the ratios for H.A.: O.A.: H.T. were found to be 2.5-3.7:1:3.8-4.2 for Pt15, Pt9, and Pt6. Although the Pt-aggregates here have not been proved to contain the same number of atoms as the clusters from which they are formed, the results indicate that they consist of crystallites of particle size <10 Å.² The H₂-O₂ titration stoicheiometries were reproduced in several runs after treatment with H₂ and evacuation at 350 °C.

favour the formation of adsorbed carbocyclic reaction intermediates as suggested by Anderson et al.³

The dehydrocyclisation and the skeletal isomerisation

(Received, 23rd September 1975; Com. 1088.)

¹ J. C. Calabrese, L. F. Dahl, P. Chini, G. Longoni, and S. Martinengo, J. Amer. Chem. Soc., 1974, 96, 2614.

² G. R. Wilson and W. K. Hall, J. Catalysis, 1972, 24, 306. ³ J. R. Anderson, R. J. MacDonald, and Y. Shimoyama, J. Catalysis, 1971, 20, 147.