Electron-diffraction Investigation of the Molecular Structure of Bicyclo $[\mathbf{3}, \mathbf{3}, \mathbf{1}]$ nonane

By Evgeniya L. Osina, Vladimir S. Mastryukov,* Lev V. Vilkov, and Nina A. Belikova (Department of Chemistry, Moscow State University, Moscow 117234, U.S.S.R.)

Summary The geometry of the title compound was de- Cyclohexane (1), bicyclo[3,3,1]nonane (2), and adamantermined by electron diffraction in the gas phase. tane (3) are interesting molecules with a diamond-like arrangement of carbon atoms. Accurate geometries of (1) ${ }^{1}$
and $(\mathbf{3})^{2}$ are known in the gas phase, but the structure of (2) can be constructed only on the basis of several derivatives studied in the crystal ${ }^{3}$ or by molecular mechanics calculations. ${ }^{4}$ In view of the lack of experimental data for (2) we undertook an electron diffraction study of this molecule.

The structure of (2) (refined by a least-squares analysis to $R 0.06$) is shown in the Figure. The twin-chair conformation gives the best agreement with the intensity and radial distribution curves. This is in accord with a conclusion by Laszlo ${ }^{5}$ and a quantitative analysis for the conformation which has the minimum energy. ${ }^{4}$

(1)

(2)

(3)

The average $\mathrm{C}-\mathrm{C}$ bond length is fairly reliable but the individual differences are not well established. The average C-C bond distance in (2) of $1.536(2) \AA$ is closer to that in (1) $[1.534 \AA]$ than to that in (3) $[1.540 \AA]$. This is also true for the average $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angle of 111.5° in (2) which can be compared with 111.4° in (1) and 109.3° in (3). Both these facts can be rationalized on the basis of unfavourable gauche interactions relieved by bond angle and torsion angle deformations in (1) and (2). However, in (3) only the $\mathrm{C}-\mathrm{C}$ bond lengthening leads to relief of strain. ${ }^{6}$ A similar model was suggested to account for the differences observed in $\mathrm{C}-\mathrm{C}$ bond distances in n -hydrocarbons and diamond. ${ }^{7}$

The six-membered ring in (2) shows a rather drastic flattening compared with that in (1), which is probably due to $C(3)-C(7)$ methylene non-bonded interactions. ${ }^{8}$ The dihedral angle between the planes $\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$ and $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ in (2) $\left(53^{\circ}\right)$ is significantly less than in (1) $\left(54 \cdot 9^{\circ}\right)$ or in (3) $\left(60.5^{\circ}\right)$. A similar flattening has been indicated in the crystal. ${ }^{8}$

Figure Bond lengths and angles in bicyclo[3,3,1]nonane. The uncertainties in molecular parameters are believed to be $0.015 \AA$, $\mathbf{1} \cdot 0^{\circ}$ and $2 \cdot 0^{\circ}$ for internuclear distances, bond angles and dihedral angles respectively.

With the value of the angle $\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(5)$ now available for (2) it can be seen that the angle between the two bridging carbons in symmetrical bicyclo $[m, m, 1]$ alkanes opens linearly with increasing ring size; $n=m+3, \angle \mathrm{CCC}=$ $0 \cdot 12+18.55 n^{\circ} \quad(n=4,5,6)$. Experimental results are: $74 \cdot 2^{\circ}$ for bicyclo[1,1,1]pentane, ${ }^{9} 93 \cdot 1^{\circ}$ for bicyclo[2,2,1]heptane, ${ }^{10}$ and 111.3° for (2). This trend can be reproduced by molecular mechanics calculations.
(Received, 29th September 1975; Com. 1115.)
${ }^{1}$ O. Bastiansen, L. Fernholt, H. M. Seip, H. Kambara, and K. Kuchitsu, J. Mol. Struc., 1973, 18, 163.
${ }^{2}$ I. Hargittai and K. Hedberg, Chem. Comm., 1971, 1499; 'Molecular Structures and Vibrations,' ed. S. J. Cyvin, Elsevier, Amsterdam, 1972, p. 340.
${ }^{3}$ N. S. Zefirov, Uspekhi Khim., 1975, 44, 413.
${ }^{4}$ N. L. Allinger, M. T. Tribble, M. A. Miller, and D. H. Wertz, J. Amer. Chem. Soc., 1971, 93, 1637; E. M. Engler, J. D. Andose, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1973, 95, 8005.
${ }^{5}$ I. Laszlo, Rec. Trav. chim., 1965, 84, 251
${ }^{6}$ P. v. R. Schleyer, J. E. Williams, and K. R. Blanchard, J. Amer. Chem. Soc., 1970, 92, 2377.
${ }^{7}$ L. S. Bartell, J. Amer. Chem. Soc., 1959, 81, 3497.
${ }^{8}$ W. A. C. Brown, J. Martin, and G. A. Sim, J. Chem. Soc., 1965, 1844.
${ }^{9}$ A. Almenningen, B. Andersen, and B. A. Nyhus, Acta Chem. Scand., 1971, 25, 1217.
10 A. Yokozeki and K. Kuchitsu, Bull. Chem. Soc. Japan, 1971, 44, 2356.

