Chemical Synthesis with Metal Atoms: Preparation and X-Ray Structure of $(\eta^{5}$ -cycloheptadienyl)- $(\eta^{5}$ -cycloheptatrienyl) Iron. A Bifluxional Molecule

By J. RICHARD BLACKBOROW,* KNUT HILDENBRAND, (the late) ERNST KOERNER VON GUSTORF,

ALBERTO SCRIVANTI, and (in part) COLIN R. EADY and DANIEL EHNTOLT

(Institut für Strahlenchemie im Max-Planck-Institut für Kohlenforschung, D-4330 Mülheim a.d. Rhur,

Stiftstrasse 34-36)

and CARL KRÜGER

(Max-Planck-Institut für Kohlenforschung, D-4330 Mülheim a.d. Ruhr, Lembkestrasse 5 B.R.D.)

Summary $[Fe(\eta^5-C_7H_7) (\eta^5-C_7H_9)]$ has been prepared by cocondensation of iron vapour with cycloheptatriene; an X-ray analysis shows a sandwich structure with open faces of the two η^5 -systems skew to each other, and in solution two types of fluxional behaviour are exhibited.

We have prepared [Fe(η^{5} -C₇H₇) (η^{5} -C₇H₉)] by co-condensation of iron atoms and cycloheptatriene at -196 °C. Laser-assisted thermal evaporation of iron $(10^{-4}$ Torr, 10 g/h) was carried out in an apparatus described previously.1 After workup at -20 °C under argon, dark red crystals,† m.p. 195 °C; M 248 (C₆H₆), m/e 240 (M^+), 148 ($M - C_7H_8$)⁺, and 91 $(C_7H_7)^+$] were obtained in $4\cdot 2\%$ yield from iron evaporated, which were structurally characterised by X-ray crystallography. Crystal data: monoclinic, space group $P2_1/c$, a = 10.991(1), b = 8.628(1), c = 12.594(1) Å, $\beta =$ $112\cdot11(1)^\circ$, Z = 4. 2364 Diffractometer intensities were collected with graphite-monochromated Mo- K_{α} radiation from which 1951 reflections were deemed observed. The structure was refined by full-matrix least-squares methods to a conventional R-value of 0.049 including refined hydrogen parameters. Bond distances and hydrogen atom positions reveal a non-symmetrical system with two sp^2 [C(2)-C(3), 1.319(9) Å] and two sp^3 carbon atoms [C(11)-C(12), 1.484(6) Å] and the open faces of the two η^{5} -systems skew (60°) to each other.² The complexed ring fragments are planar to within 0.03 Å, the terminal carbon atoms [C(4) and C(10)] in a trans position to each other being bonded slightly more weakly than the other atoms to the central atom [Fe-C(4) 2.115, Fe-C(10) 2.136 Å] and therefore being removed from these planes by 0.10 and 0.24 Å respectively (Figure).

The structure of the molecule in solution (C_7D_8 , CDCl₃) is fluxional and is represented by the three modifications (A) (-80 to -30 °C), (B) (-30 to 50 °C), and (C) (50 to 80 °C). The ¹H n.m.r. spectrum of (A) shows 16 different proton resonances (distinguishable where they overlap by ¹H-¹H double resonance experiments) and the ¹³C proton-noise-decoupled (p.n.d.) n.m.r. spectrum shows 14 resonances. We believe this information is consistent with a structure for (A) which is similar to that observed in the solid with open faces of the two η^5 -systems angled to each other. The ¹³C-p.n.d. n.m.r. spectrum of (B) is derived from that of (A) by a pairwise coalescence of 12 of the 14 signals of the (A) form, two remaining unchanged; similarly the ¹H n.m.r. spectrum of (B) appears to be derived from that of (A) by a pairwise coalescence of signals as would be observed if each ring developed a mirror plane through atoms C(6) or C(8) bisecting the bonds C(2)-C(3) or C(11)-C(12) respectively. Form (B) must therefore contain two rings which rock or rotate with respect to each other in such a way that a pairwise equivalence of all but the C(6)-H and C(8)-H units is induced on the n.m.r. time scale.³

FIGURE. X-Ray structure of $[Fe(\eta^5-C_7H_7)(\eta^5-C_7H_9)]$; bond lengths in Å.

The ¹H n.m.r. spectrum of (C) shows a coalescence of all the protons of the C_7H_7 ring ($\tau 5.6$) and an equivalencing of the η -pentadienyl protons of the C_7H_9 ring ($\tau 5.65$), the CH₂ resonances remaining the same as in (B) ($\tau 7.5$ and 8.6).

[†] Satisfactory elemental analyses were obtained.

The ¹³C-p.n.d. n.m.r. spectrum of the C₇H₉ ring of (C) remains the same as that of (B) but the 4 signals assignable to the C_7H_7 ring have coalesced. The incorporation of the free diene unit of the C_7H_7 ring of (B) in a further fluxional motion for C explains the equivalencing of the ${}^{13}\mathrm{C}$ and ${}^{1}\mathrm{H}$ n.m.r. signals, but both rings remain η^{5} -bonded because the ¹³C n.m.r. spectrum of the C_7H_9 ring remains unchanged.

We thank our colleagues at the Max-Planck-Institute for support.

(Received, 24th October 1975; Com. 1202.)

- ² For details of data collection and computing procedures see: D. J. Brauer, C. Krüger, P. J. Roberts, and Y.-H. Tsay, Chem. Ber., 1974, 107, 3706. A list of atomic parameters and structure factors may be obtained from the authors (C.K.)
 ³ J. Müller, C. G. Kreiter, B. Mertschenk, and S. Schmitt, Chem. Ber., 1975, 108, 273; T. H. Whitesides and R. A. Budnik, Chem. Comm., 1971, 1514; T. H. Whitesides and R. A. Budnik, J.C.S. Chem. Comm., 1974, 302.