A New Synthetic Route to Mesoionic Thiazoles

By MICHÈLE BAUDY and ALBERT ROBERT*

(Groupe de recherches de chimie structurale, E.R.A. 389, Université de Rennes, Avenue du Général Leclerc, Rennes, France)

Summary Mesoionic thiazoles are obtained in good yield by the reaction of *gem*-dicyano epoxides with thioamides in a neutral medium.

ANHYDRO-5-HYDROXYTHIAZOLIUM HYDROXIDES (3) are masked 1,3 dipoles and are useful synthetically in heterocyclic chemistry,¹ but only a few synthetic routes leading to them are known.² We report here a new synthetic route to the mesoionic compounds (3).

TABLE. Preparation of the mesoionic thiazoles (3)^a

x	R1	R²	M.p. (t/°C)	Yield (%)	$\nu_{C=0}/cm^{-1}$ (CCl ₄)
н	\mathbf{Ph}	\mathbf{Ph}	270 ^b	72	163 0
Cl	\mathbf{Ph}	\mathbf{Ph}	300	94	1630
NO_2	Ph	\mathbf{Ph}	273	70	1654
Cl	\mathbf{Ph}	$PhCH_2$	168	65	1625
NO_2	\mathbf{Ph}	PhCH ₂	210	71	1638
Cl	Me	Ph	180	30	1716, 1628
NO_2	Me	\mathbf{Ph}	280	60	1644

^a Combustion analyses and mass spectra of the compounds herein are in agreement with this structure. ^b Ref. 5.

The gem-dicyano-epoxides³ (1) react in solution in dioxan or acetone with stoicheiometric quantities of the

thioamides (2) (Scheme 1).⁴ In most cases the reaction is complete after 24 h at room temperature and the meso-

SCHEME 2. For (3), $\delta(Me) 2.48(s)$; for (4); $\delta(CH) 5.18(s)$, $\delta(CH_2) 4.34$ (ABq, $J_{AB} 2.5$ Hz). All signals disappear on addition of CD_3CO_2D .

range² 1620-1650 cm⁻¹ (Table). It is interesting that compound (3; X = Cl, $R^1 = Me$, $R^2 = Ph$) shows two carbonyl bands in solution in CCl₄, whereas the solid (Nujol mull) shows only one band, at 1623 cm^{-1} . Its n.m.r. spectrum (CHCl₃) shows the existence of a tautomeric equilibrium $(3) \rightleftharpoons (4)$ (Scheme 2).

This result suggests that the compound obtained by Ohta

et al.,⁵ is not a mesoionic compound (3; X = H, $R^1 = Me$, $R^2 = Ph$). The unusually high value of the carbonyl band 1710 cm^{-1} (KBr) observed for this compound, is in best agreement with a tautomeric form similar to (4).

(Received, 31st October 1975; Com. 1228.)

¹ K. T. Potts, E. Houghton, and U. P. Singh, Chem. Comm., 1969, 1129; J. Org. Chem., 1974, 39, 3627; K. T. Potts, J. Baum, and E. Houghton, J. Org. Chem., 1974, 39, 3631; S. Nakazawa, T. Kiyosawa, K. Hirakawa, and H. Kato, J.C.S. Chem. Comm., 1974, 621.

² M. Ohta and H. Kato, 'Sydnones and Other Mesoionic Compounds,' in 'Non-benzoid Aromatics,' ed. J. P. Snyder, Academic Press, New York, 1969.

³ The gem-dicyano-epoxides (1) were obtained quantitatively in a few minutes, by the reaction of NaClO with α -cyano-acrylonitriles: J. J. Pommeret and A. Robert, *Tetrahedron*, 1971, 27, 2977. ⁴ This reaction is comparable with the reaction of (1) and with thiourea, leading to 2-amino-4-thiazolinones. The two mechanisms

must be similar; M. Ferrey, A. Robert, and A. Foucaud, Compt. Rend., 1973, 277C, 1153. ⁵ M. Ohta, H. Chosho, C. Shin, and K. Ichimura, J. Chem. Soc. Japan, 1964, 85, 440.