Biosynthesis of Firefly Luciferin. Probable Formation of Benzothiazole from **p**-Benzoquinone and Cysteine

By KUNISUKE OKADA,* HIDEO IIO, and TOSHIO GOTO

(Department of Agricultural Chemistry, Nagoya University, Chikusa, Nagoya 464, Japan)

Summary Experiments showing positive incorporation of [¹⁴C]-p-benzoquinone into luciferin strongly suggest that the benzothiazole nucleus in firefly luciferin arises from *p*-benozquinone and cysteine.

In considering the biosynthetic route to firefly luciferin (1),¹ it is reasonable to assume that the thiazoline ring is derived from cysteine.² However, experiments showing the direct precursor to the benzothiazole ring have not been reported, except McCapra's successful biomimetic synthesis³ of 2-ethoxycarbonyl-6-hydroxybenzothiazole from benzoquinone and cysteine, both of which were thought to be precursors for the 6-hydroxybenzothiazole unit in firefly luciferin. We now present evidence in support of the above proposition obtained from feeding experiments in vivo.

¹⁴C-Labelled substrate was injected into live Japanese fireflies, Luciola cruciata. After adequate intervals, a number of fireflies were quickly frozen in solid CO₂ and then luciferin was extracted in the usual way.² The crude luciferin was diluted with a known amount of cold luciferin and the mixture was transformed into the stable luciferin acetate² which was recrystallised from methanol to constant radioactivity. The results are summarised in the Table.

Experiments 1 and 2 (Table) show that benzoquinone and hydroquinone (equivalent to benzoquinone in vivo) can be efficiently used for generation of luciferin, and

experiment 3 shows that tyrosine is less effective than benzoquinone. This indicates that benzoquinone is the precursor of luciferin.⁴ It is also evident that incorporation of benzoquinone is not through acetate, because the radiochemical yield of luciferin from sodium [14C]acetate is very low (Table, experiment 4).

Thus, the proposition that the benzothiazole ring is formed as a result of the condensation of p-benzoquinone with cysteine seems most probable, but confirmation of the exact pathway must await alternative feeding experiments using ¹³C labelled substrates since it is difficult to obtain degradation products from luciferin.¹

(Received, 19th August 1975; Com. 957.)

TABLE. Incorporation of ¹⁴C substrate into firefly luciferin.

Experi- ment no.	Substrate	Activity administered (d.p.m.)	Number of fireflies used	Incorporation After 24 h	of ¹⁴ C (%) After 60 h
1	[2,3,5,6-14C]-p-Benzoquinone	$0.95~ imes~10^{6}$	50	0.305	a
2	[2,3,5,6-14C]Ĥydroquinone	$2.87 imes 10^{6}$	50	0.073	0.418
3	L-[U-14C]Tyrosine	$2{\cdot}2~ imes~10^{6}$	50	0.005	0.020
4	Sodium[2-14C]acetate	$2{\cdot}2~ imes~10^{6}$	50	0.0023	0.0036

^a Injecting *p*-benzoquinone in 40% ethanol resulted in the death of many fireflies and the activity could not be measured.

¹ E. H. White, F. McCapra, and G. F. Field, J. Amer. Chem. Soc., 1963, 85, 337. ² K. Okada, H. Iio, I. Kubota, and T. Goto, Tetrahedron Letters, 1974, 2771.

³ F. McCapra and Z. Razavi, J.C.S. Chem. Comm., 1975, 42.

⁴ J. Meinwald, K. F. Koch, J. E. Roger, Jr., and T. Eisner, J. Amer. Chem. Soc., 1966, 88, 1590.

Printed by Heffers Printers Ltd Cambridge England