Catalysis by Adsorbed Hydrogen Sulphide of the Dealkylation of Cumene at High Temperature

By Маsatoshi Sugioka,* Томіјі Hosotsubo, and Kazuo Aomura (Department of Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060, Japan)

Summary Hydrogen sulphide adsorbed on metal Y zeolites (MZeY, $M=Cd,\ Ni,\ Cu,\ Ag,\ or\ Co)$ enhances its catalytic activity for the dealkylation of cumene at high temperature.

The catalytic activity of metal Y zeolites, MZeY, (M = Cd, Ni, Cu, Ag, or Co) for the dealkylation of cumene

at 300 °C was enhanced by pretreatment with $\rm H_2S$ at this temperature. The increased catalytic activity of these metal zeolites by pretreatment with $\rm H_2S$ was sustained in a series of experiments; carbonaceous deposits accumulated on the catalyst surface. In contrast, the catalytic activity of MZeY zeolites (Me = Na, Mg, Ca, or Zn), and SiO₂, $\rm Al_2O_3$, and SiO₂- $\rm Al_2O_3$ was enhanced very little by this

Table. Initial activities of various solid acid catalysts at 300 °C.

			$k imes 10^{-2}/^{ m b} \ ({ m ml~g^{-1}~min^{-1}})$			
			%-Ion	Without	\mathbf{With}	
Catalysta			exchanged	$H_2S(k_0)^c$	$H_2S(k_t)^d$	$k_{ m t}/k_{ m o}^{ m e}$
SiO_2				0	0	
$Al_2\bar{O}_3$				0	0	
SiO ₂ -A	Al ₂ O ₃			1.0	1.1	1.1
NaŸ 2	eolite			0	0	
MgY	,,		$69 \cdot 2$	$4 \cdot 6$	4.5	1.0
$\widetilde{\text{CaY}}$	"		$73 \cdot 8$	5.1	$5 \cdot 1$	1.0
CdY	"		$75 \cdot 2$	$2 \cdot 9$	15.9	5.5
NiY	,,		68.8	$3 \cdot 1$	15.7	5.1
CuY	,,		$77 \cdot 3$	$3 \cdot 1$	16.5	$5 \cdot 3$
AgY	"		93.9	$2 \cdot 0$	9.2	4.6
$\widetilde{\text{CoY}}$,,		71.4	$5 \cdot 2$	12.8	$2 \cdot 5$
ZnY	,,		$78 \cdot 6$	12.9	17.1	1.3

 a 5—10 mg; heated at 500 °C in air and 450 °C in a helium stream. MZeY zeolites were prepared by Na exchange from NaY zeolite (SK-40). $^{\rm b}$ First-order rate constant in the initial reaction. $^{\rm c}$ 1·4 × 10⁻⁵ mol of pure cumene was injected into the reaction vessel at 300 °C. $^{\rm d}$ 0·9 × 10⁻⁴ mol of H₂S was added to the catalysts at 300 °C and after 10 min dealkylation was carried out in a stream of helium. The amount of adsorbed H₂S on MZeY (M=Cd, Ni, Cu, Ag, Co, or Zn) was ca. 10⁻⁶ mol/10 mg-MZeY. $^{\rm e}$ Activity ratio.

treatment, or by pretreatment with $\rm H_2O$ at 300 °C. The initial activities of these solid acid catalysts at 300 °C with and without $\rm H_2S$ pretreatment are shown in the Table.

The increased catalytic activity of the MZeY zeolites with H₂S pretreatment was poisoned by pyridine injection, implying that the increased catalytic activity is due to increase in the acidity of the zeolite. I.r. spectra of H₂S adsorbed on MZeY indicated that there was interaction between the OH groups on the surface and chemically adsorbed H₂S.¹

As the dealkylation of cumene has been reported to proceed on the Brönsted acid site of the solid acid catalysts² the increase in the catalytic activity of MZeY $(M=Cd,\ Ni,\ Cu,\ Ag,\ or\ Co)$ upon H_2S pretreatment for this reaction may be attributed to the formation of new Brönsted acid sites by the interaction of OH groups and H_2S on the MZeY surface.

(Received, 10th October 1975; Com. 1157.)

¹ M. Sugioka, T. Hosotsubo, and K. Aomura, unpublished data.

² M. F. L. Johnson and J. S. Melik, J. Phys. Chem., 1961, 65, 1146; M. Okuda and T. Tachibana, Bull. Chem. Soc. Japan, 1963, 36, 462; I. Mochida and Y. Yoneda, J. Catalysis, 1967, 7, 386.