
Triple Chloro-bridged Heterobimetallic Phosphine Complexes Containing Ruthenium(11) and Rhodium(111)[†]

By ROBERT A. HEAD and JOHN F. NIXON*

(School of Molecular Sciences, The University of Sussex, Brighton BN1 9QJ)

Summary A series of triple chloro-bridged heterobimetallic phosphine complexes of the type $[(PPh_3)LCIRuCl_3-RhClL_2](L = PMe_2Ph, PEt_2Ph, PBun_2Ph, PBun_3, or$ $PPh_3) have been prepared from the mononuclear com$ $plexes <math>[RuCl_2(PPh_3)_3]$ and $[RhCl_3L_3]$; these reactions involve phosphine-ligand transfer from rhodium to ruthenium.

RECENTLY¹ we reported the synthesis of the triple chlorobridged diruthenium(II) complex, $[(PF_3)(PPh_3)_2RuCl_3RuCl_(PF_3)(PPh_3)]$, from the reaction between $[RuCl_2(PPh_3)_3]$ and *cis*- $[RuCl_2(PF_3)_2(PPh_3)_2]$. An interesting feature of the reaction was the PF₃ ligand transfer from one ruthenium atom to the other. We now describe the synthesis of a

series of triple chloro-bridged heterobimetallic complexes of the type $[(PPh_3)LCIRuCl_3RhClL_2]$ (I) (L = PMe_2Ph, PEt_2Ph, PBuⁿ_2Ph, PBuⁿ_3, or PPh_3) containing ruthenium-(II) and rhodium(III) which are formed in high yields from the reactions of $[RuCl_2(PPh_3)_3]$ with the appropriate *mer*-[RhCl_3L_3] compound as shown in equation (1). Complex (I; L = PPh_3) is also obtained from the reaction of $[RhCl_3-(PF_3)(PPh_3)_2]$ {prepared by careful chlorination of *trans*-[RhCl(PF_3)(PPh_3)_2] } with $[RuCl_2(PPh_3)_3]$.

The structures of the complexes (I), which form deep-red or purple crystals, have been assigned on the basis of elemental analysis, molecular weight measurements, and 31 P n.m.r. spectra (see below). The formation of the hetero-

† Reprints not available

nuclear bimetallic complexes appears to involve a transfer of one phosphine ligand, L, from rhodium to ruthenium.

The proton decoupled ³¹P n.m.r. spectrum of (I; L =PBuⁿ₂Ph) (Figure) is typical of the series of complexes studied. The resonances of the two different phosphines on ruthenium constitute an AX spin system and give the expected 1:1 doublet patterns $[{}^{2}J(P-Ru-P') 40.0 \text{ Hz}]$, the phosphorus chemical shifts being 85.5 p.p.m. (PPha) and 101.0 p.p.m. (PBun₂Ph), relative to P(OMe)₃. The two magnetically non-equivalent¹ PBuⁿ₂Ph ligands co-ordinated to rhodium give rise to an AB pattern of lines [δ 177.0 (P¹), 114.7 (P²) ²/(P¹-P²) 22 Hz], each being split further into doublets by the ¹⁰³Rh nucleus $[I = \frac{1}{2}, 100\%$ natural abundance, ${}^{1}J(P^{1}-Rh) = {}^{1}J(P^{2}-Rh) = 117 \cdot 2 \text{ Hz}].$ The directly bonded P-Rh coupling constants in (I) are similar to those measured in typical mononuclear rhodium(III)phosphine complexes.²

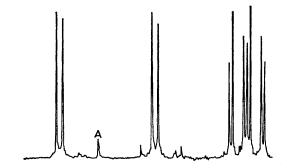


FIGURE. $40.5 \text{ MHz} {}^{31}P{}^{1}H{}$ n.m.r. spectrum of (I; L = PBuⁿ₂-Ph). The signal marked A is due to a trace of [RuCl₂(PPh₃)₃].

Preliminary results indicate that analogous mixed ruthenium-iridium complexes may also be obtained. On

the other hand, the reaction between $[PtCl_4(PBun_2Ph)_2]$ and [RuCl₂(PPh₃)₃] readily affords high yields of the monomeric platinum(II) complex trans-[PtCl₂(PPh₃)₂].³

These results are of interest in connection with recent reports by Masters et al.4,5 on the bimetallic complexes

- ¹ R. A. Head and J. F. Nixon, J.C.S. Chem. Comm., 1975, 135. ² J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 345.

- F. Hukon and J. F. Nixon, and A. Al-Ohaly, unpublished results.
 C. Masters and J. P. Visser, J.C.S. Chem. Comm., 1974, 932.
 A. A. Kiffen, C. Masters, and J. P. Visser, J.C.S. Dalton, 1975, 1311.

(Received, 31st October 1975; Com. 1227.)