# Stereochemistry of the Photochemical Berson-Willcott Rearrangement of Methyl 2,3-Benzonorcaradien-7-ylacetate to Methyl 2,3-Benzobicyclo-[3.2.0]hepta-2,6-dien-4-ylacetate 

By Masahiko Kato,* Mitsuru Funakura, Masakazu Tsuji, and Toshio Miwa<br>(Faculty of Science, Osaka City University, Osaka; Japan 558)

Summary The photochemical Berson-Willcott skeletal rearrangement of methyl 2,3-benzonorcaradien-7-ylacetate to methyl anti-2,3-benzobicyclo[3.2.0]hepta-2,6-dien-4ylacetate was found to proceed with inversion of configuration at C-7.

In a previous paper, ${ }^{1}$ we described the photochemical rearrangement ${ }^{2}$ of methyl 2,3 -benzonorcaradien- 7 -ylacetate (1) to give a series of compounds, including methyl anti-2,3 benzobicyclo[3.2.0]hepta-2,6-dien-4-ylacetate (2) $\dagger$ which was obtained in a highly stereospecific manner.


Scheme 1

To clarify the stereochemical course of the photochemical rearrangement of (1) to (2) $\ddagger$ the absolute configurations of the starting material $(+)-(3)$ and the resulting product
(-)-(2) had first to be established because it is known that the acid (3) is fixed rigidly as the exo-structure but (1) is susceptible to the thermal and photochemical Cope rearrangement to an exo-endo mixture with retention of the configuration at C-7. ${ }^{1,3}$

Catalytic hydrogenation of (+)-(3), $[\alpha]_{\mathrm{p}}+150^{\circ}$, followed by treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, gave a hydrogenolysis product (4) along with a dihydroester. The $S$-( - )-configuration of (4) was confirmed by correlating it with $R-(+)-$ benzylsuccinic acid (5) ${ }^{4}$ (Scheme 2). The configuration at C-7 of ( + )-(3) was thus determined as $R$.

$R-(+)-(5)[\alpha]_{D}+22 \cdot 3^{\circ}$


Scheme 2

In order to determine the absolute configuration of (-)(2), diethyl 1,2-benzocyclohepta-1,3,5-trien-7-ylmalonate ${ }^{5}$ was hydrolysed to the diacid, whose optical resolution was carried out through its brucine salt to give the $(+)$-diacid
$\dagger$ Previously, we could not identify the syn-isomer of (2), but careful examination of the photolysis products by v.p.c. and n.m.r. spectroscopy allowed us to estimate its formation along with (2) in the ratio of 5:95.
$\ddagger$ The optical rotations of the compounds described in this paper were measured in $95 \%$ EtOH solutions. All compounds showed satisfactory analytical data.

$(+)-(7)$
$R-(-)-(8)$

$X=\mathrm{CO}_{2} \mathrm{H} \quad R-(+)-(9)$
$X=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me} \mathrm{S}-(+)-(10)$

(iI)

(6), $[\alpha]_{D}+202^{\circ}$. The diacid was decarboxylated to the mono acid, which was converted to its methyl ester (7), $[\alpha]_{\mathrm{D}}+78^{\circ}$. The ( + )-ester (7) underwent a photochemical disrotatory ring closure to ( + )-anti-(2), $[\alpha]_{\mathrm{D}}+145^{\circ}$. On the other hand, $(+)-(7),[\alpha]_{\mathrm{D}}+78^{\circ}$, was hydrogenated to a $(-)$-tetrahdro derivative (8), $[\alpha]_{\mathrm{D}}-23^{\circ}$. The absolute configuration of $(+)-(8)$ was established to be $S$ by correlating it with $R-(+)-(9)$ (Scheme 3). Homologation of the optically impure $(+)$-acid $(9),{ }^{4}[\alpha]_{\mathrm{D}}+16.7^{\circ}$, to the methyl ester (10), $[\alpha]_{\mathrm{D}}+14 \cdot 7^{\circ}$, was achieved using Arndt-Eistert conditions. Ring enlargement of $(+)-(\mathbf{1 0})$ using diazo-methane- $\mathrm{BF}_{3}$ in ether ${ }^{6}$ gave a mixture of ketones, which were reduced to methylene esters using the tosylhydrazine and sodium cyanoborohydride technique in sulpholaneDMF. ${ }^{7}$ G.l.c. separation of the methylene esters gave $S-(+)-(8),[\alpha]_{\mathrm{D}}+9 \cdot 6^{\circ}$, which was identical with the sample obtained by hydrogenation of $(+)-(7)$, but of opposite optical rotation.

Thus the photochemical rearrangement of (1) to (2) proceeded with inversion of the configuration at C-7 of the norcaradiene system through (7), possibly via a transient intermediate like (11), in agreement with orbital symmetry considerations.

We thank the Ministry of Education of Japan for financial support.

Scheme 3
(Received, 30th October 1975; Com. 1221.)
${ }^{1}$ M. Kato, M. Kawamura, Y. Okamoto, and T. Miwa, Tetrahedron Letters, 1972, 1171.
${ }^{2}$ J. S. Swenton, K. A. Burdett, D. M. Madigan, T. Johnson, and P. D. Rosso, J. Amer. Chem. Soc., 1975, $97,3428$.
${ }^{3}$ O. L. Chapman, M. Kane, J. D. Lassila, R. L. Loeschen, and H. E. Wright, J. Amer. Chem. Soc., 1969, 91, 6856; A. S. Kende, Z. Goldschmidt, and P. T. Izzo, ibid., p. 6858.
${ }^{4}$ B. Sjöberg, Acta Chem. Scand., 1960, 14, 273.
${ }^{5}$ E. Vedejs, R. A. Shepherd, and R. P. Steiner, J. Amer. Chem. Soc., 1970, 92, 2158.
${ }^{6}$ E. Muller, M. Bauer, and W. Rundel, Tetrahedron Letters, 1960, 30.
${ }^{7}$ R. O. Hutchins, C. A. Milewski, and B. E. Maryanoff, J. Amer. Chem. Soc., 1973, 95, 3662.

