Formation and X-Ray Structure of the Hexa(t-butylthiolato)pentacuprate(1) Monoanion

By IAN G. DANCE

(School of Chemistry, University of New South Wales, Kensington, N.S.W., 2033, Australia)

Summary The $[Cu_5(\mu_2\text{-}SBu^t)_6]^-$ cluster contains a metalmetal bonded trigonal bipyramid of copper(I) atoms enclosed within a distorted octahedron of doubly-bridging thiolate ligands.

ALTHOUGH copper-thiolate (RS⁻) compounds have been known for many years,¹ and have recently been studied owing to their biological occurrence² and chemotherapeutic value,³ definitive structural information for copper co-ordination by monothiolate ligands is still virtually nonexistent.⁴ Three classes of structure are anticipated: (i) extensively non-molecular insoluble compounds $[CuSR]_n$; (ii) monometallic complexes $[Cu(SR)_n]^{1-x}$; (iii) molecular

FIGURE 1. The $[Cu_5(\mu_2-SBu^{t})_6]^-$ cluster.

cluster complexes with intermediate RS^- : Cu ratios. We now report the formation and stereochemistry of a new copper(I)-t-butylthiolate cluster complex.

FIGURE 2. View of the $Cu_5(\mu_2$ -SBu^t)₆ cluster (excluding terminal carbon atoms) along the pseudo-threefold Cu_{trig}-Cu_{trig} axis, showing the 49° twist of the trigonal co-ordination planes and the 0.4 Å displacement of each Cu_{dig} towards the cluster centroid.

Synthetic experiments involved the addition of copper(II) nitrate in EtOH to *ca.* 0·1M Bu^tSH (with equimolar triethylamine) in acetone or acetonitrile, with exclusion of dioxygen. A dark coloured species forms initially, but disappears within one second, after which only copper(I) complexes are present. At [RS⁻]: [Cu^I] ratios >10 the intensely yellow equilibrium species are probably the coordinatively saturated complexes [Cu(SBu^t)_x]^{1-x}, while [CuSBu^t]_n precipitates when [RS⁻]: [Cu^I] <1.8. Addition

of $Et_AN^+Br^-$ in EtOH to solutions with $[RS^-]$: $[Cu^I]$ ca. 3 readily gives large bright yellow crystals of Et₄N+[Cu₅-(SBu^t)₆]⁻. During approximately ten hours exposure to diffuse sunlight these crystals darken through orange to brown, and eventually fragment.

The structure of the $[Cu_5(SBu^t)_6]^-$ cluster in the crystalline state[†] is illustrated in Figure 1. Five copper atoms are arrayed as a regular trigonal bipyramid, Cuax-Cueq = 2.72 ± 0.01 Å, Cu_{eq} - $Cu_{eq} = 3.23 \pm 0.04$ Å.[‡] Each of the six thiolate sulphur atoms bridges an axial-equatorial pair of copper atoms such that the two copper atoms axial in the trigonal bipyramid possess trigonal planar co-ordination (Cutrig) and the three equatorial copper atoms possess approximately linear digonal co-ordination (Cudig). Two notable geometrical properties are: (i) the average copper co-ordination number (2.4) is less than the value of 2.8found⁴ with the less basic PhS⁻ ligand in $[Cu_5(\mu_2-SPh)_7]^{2-}$, and (ii) the Cu_{dig}-S bond length $(2.17 \pm 0.01 \text{ Å})$ is significantly shorter than Cu_{trig} -S (2.27 \pm 0.02 Å).

There is significant geometrical evidence for substantial intracluster copper-copper bonding. Figure 2, which views the Cu_5S_6 core along the pseudo-threefold axis common to both Cutrig atoms, emphasises two systematic distortions which carry all copper atoms towards the centroid of the cluster without decreasing copper-sulphur distances. The S-Cu_{dig}-S angles are decreased below 180° to 170 \pm 1°, and the S_6 prism is twisted 49° about the threefold axis. The resulting contraction of the Cu_5 core within the S_6 ligand polyhedron is apparent in the following significantly decreased distances (compared with the idealized undistorted distances in parentheses): centroid-Cutrig, 1.98 Å This prominent structural feature, observed also in chelated [Cu₈(S-S)₆]⁴⁻ cluster structures,⁵ reveals multicentre attractive interactions between the copper atoms.

(Received, 10th November 1975; Com. 1248.)

 $\pm \text{Et}_4 \text{NCu}_5(\text{SCMe}_3)_6$, bright yellow truncated pyramids, space group C2/c, a = 45.500, b = 11.805, c = 20.168 Å, $\beta = 117.81^\circ$. Diffractometer data (3965 reflections) were corrected via a reference reflection for deterioration in diffraction quality due to irradiation ($Cu-K_{\alpha}$) induced crystal fragmentation: normal precision levels cannot be attained in this structure determination. At isotropic refinement of all non-hydrogen atoms R = 0.12.

‡ Average derivations from the mean.

¹ W. E. Duncan, E. Ott, and E. E. Reid, *Ind. and Eng. Chem.*, 1931, 23, 381. ² B. L. Vallee and W. E. C. Wacker, in 'The Proteins', ed. H. Neurath, Academic Press, Vol. 5, 1970; P. Hemmerich, in 'The Biochem-

¹ b. D. Copper, ed. J. Peisach, P. Aisen, and W. E. Blumberg, Academic Press, 1966, p. 15.
³ J. M. Walshe, in 'The Biochemistry of Copper,' ed. J. Peisach, P. Aisen, and W. E. Blumberg, Academic Press, 1966, p. 475; Abstracts of Metals in Medicine Conference, ed. H. C. Freeman, Sydney, 1975.
⁴ The structure of [Cu₅(µ₂-SPh)₇]²⁻ has been determined; I. G. Dance, J.C.S. Chem. Comm., 1976, in the press.
⁵ F. J. Hollander and D. Coucouvanis, J. Amer. Chem. Soc., 1974, 96, 5646.