Novel Photochemical Aporphine Synthesis via Spirodienone Rearrangement: (\pm) -Boldine

By S. Morris Kupchan,* Chang-Kyu Kim, and Katsuji Miyano

(Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901)

Summary The first synthesis of (\pm) -boldine (5), by photocyclization of the (\pm) -bromodiphenol (1) to the (\pm) -spirodienone (3), followed by rearrangement to (\pm) -N-ethoxycarbonylnorboldine (4) and reduction with LiAlH₄, is reported.

The past decade has witnessed the discovery of several photochemical syntheses of aporphine alkaloids, which have proceeded by several different mechanistic pathways.¹ We describe here a novel photochemical synthesis of (\pm) -boldine (5), which proceeds *via* the intermediacy of the proceythrinadienone (3).

Photolysis[†] of the (\pm) -bromodiphenol $(1)^2$ in a solution of NaOH in absolute ethanol for 14 h gave the (\pm) -spirodienone (3), 34%,[‡] m.p. 183—184.5 °C (lit.³ 144—146 °C),

and (±)-N-ethoxycarbonylnorboldine (4),§ 5%, m.p. 197– 199 °C (EtOH–Et₂O), u.v. λ_{max} (EtOH) 304 (log ϵ 4·15), 284 (4·15), and 216 (4·61) nm; i.r. λ_{max} 2·83 and 5·96 μ m; δ (CDCl₃) 7·96 (1H, s, H-11), 6·85 (1H, s, H-8), 6·70 (1H, s, H-3), 3·93 (3H, s, C-10 OMe), 3·59 (3H, s, C-1 OMe), 4·20 (2H, q, OCH₂-Me), and 1·29 (3H, t, OCH₂Me); m/e 385 (100%, M⁺), 355

(64), 340 (4), 323 (5), 310 (12), 296 (14), 283 (31), and 269 (27), along with (\pm) -*N*-ethoxycarbonylnorprotosinomenine (2), 15%, m.p. 153—154 °C (lit.³ 148–150 °C) and the starting material (1), 8%. Treatment of (4) with LiAlH₄ in tetrahydrofuran under reflux for 18 h yielded (\pm) -boldine (5), isolated as the hydrobromide, 78%, m.p. 189—191 °C (free base, m.p. 159—162 °C). The u.v., n.m.r., and mass spectra were in good agreement with those reported for naturally occurring (+)-boldine.⁴ When a solution of (1) and sodium acetate in absolute ethanol was irradiated for 15 h, (3) and (4) were isolated in 7 and 22% yield, respectively, along with (2), 22%, and the starting material (1), 9%.

These results led us to consider that photochemical transformation of the (\pm) -bromodiphenol (1) into (\pm) -N-ethoxycarbonylnorboldine (4) may proceed via the spirodienone intermediate (3). A solution of the (\pm) -spirodienone (3) and NaOH in absolute ethanol was irradiated for 3.5 h, whereupon (4) was isolated in 6% yield along with starting material, 50%. On the other hand, photolysis of (3) in a solution of sodium acetate in absolute ethanol for 4 h yielded (4), 44%, along with recovered (3), 10%. This ready photochemical rearrangement of (3) to (4) supports the proposed intermediacy of the spirodienone in the photochemical conversion of the (\pm) -bromodiphenol (1) into (+)-N-ethoxycarbonylnorboldine (4) and constitutes the first reported synthesis of an aporphine via rearrangement of a proerythrinadienone.¶ Furthermore, the demonstrated sequence $(1) \rightarrow (3) \rightarrow (4) \rightarrow (5)$ constitutes the first total synthesis of (\pm) -boldine.

We thank the National Cancer Institute for financial support.

(Received, 21st November 1975; Com. 1303.)

† Photolyses were carried out in a quartz vessel under N_2 and irradiation with GE G15T8 germicidal lamps. Products were separated by preparative t.l.c. using plates pre-coated with silica gel 60 F-254 (EM Reagents).

[‡] The spirodienone (3) was obtained in ca. 2% yield as a powder by phenolic oxidation³ and ca. 18% yield as an oil by photolytic synthesis² under somewhat different conditions. The product with m.p. 183—184.5 °C was characterized as (3) by comparison of the u.v., i.r., n.m.r., and mass spectra with those reported in ref. 3.

§ All new compounds were characterized by concordant analytical and spectral data. The structural formulae containing asymmetric atoms refer to racemic compounds.

 \P An unsuccessful attempt to convert the spirodienone (3) into an aporphine derivative by acid-catalysed rearrangement has been reported (ref. 2).

¹ For a recent review, see M. Shamma, 'The Isoquinoline Alkaloids,' Academic Press, New York, 1972, ch. 10; S. M. Kupchan and P. F. O'Brien, J.C.S. Chem. Comm., 1973, 915.

² T. Kametani, K. Takahashi, T. Honda, M. Ihara, and K. Fukumoto, Chem. and Pharm. Bull. (Japan), 1972, 20, 1793.

⁸ T. Kametani, R. Charubala, M. Ihara, M. Koizumi, K. Takahashi, and K. Fukumoto, J. Chem. Soc. (C), 1971, 3315.

⁴ M. Shamma, Experientia, 1960, 16, 484; A. H. Jackson and J. A. Martin, J. Chem. Soc. (C), 1966, 2181 and 2222.