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Summary The carbohydrate carbon resonances of the 
macrolide antibiotics studied can be in most cases differ- 
entiated from the aglycone signals by carbon-13 spin- 
lattice relaxation time measurements. 

UNAMBIGUOUS assignment of all the resonances in the 
proton-decoupled 13C n.m.r. spectra of complex natural 
products often becomes a necessity for structural or con- 
formational analysis, but in some cases this may be very 
difficult. Besides the well known conventional techniques2 
13C n.ni.r. spin-lattice relaxation time measurements can 
be invaluable in this respect when internal or anisotropic 
motion contributes substantially to T ,  for some carbon 
atoms3 

A number of biologically important compounds are made 
up of a complex aglycone to which one or several sugar units 
are attached. An analysis of the 13C n.m.r. spectra of 
these substances often requires spectral data for the appro- 
priate methyl glycosides as  model^.^ These compounds 
may not be easily available, and may require special syn- 
theses. We show here that in some cases the carbohydrate 
carbon resonances can be differentiated from the aglycone 
signals by 13C n.m.r. spin-lattice relaxation time measure- 
ments without spectral comparison between the natural 
product and its sugar components. 

The complete set of measured T ,  valuest for the macrolide 
antibiotic tylosin (1) is shown in the Figure while the 
Table indicates the average 13C n.m.r. N T ,  data for the CH 

t N.O.E. determinations indicate that relaxation of the protonated carbon atoms is overwhelmingly dominated by dipolar inter- 
actions with the attached protons. 
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and CH, type carbon atdms of the compounds examined. 
The average N T ,  values corresponding to the respective 
fragments given in the Table were calculated on the basis 
of our previously reported chemical shift  assignment^.^ In 
tylosin (1) and chalcomycin (4) N T ,  values for the mycinose 
carbons are markedly longer than the N T ,  values calculated 
for the respective aglycones or other hexoses present in these 

TABLE” 

Average 13C N T ,  

Carbon type 
(CH + CH2) 

Macrolide ring . . 
Mycaminose . . 
Mycarose . . .. 
Mycinose . . .. 
Forosamine . . 
Chalcose . . .. 

data (in sec) for 
antibioticsb 

Leuco- 
mycin 

Tylosin A, 

0.16 0.09 
0.17 0.09 
0.20 0.11 
0.37 

(1) (2) 

- 
- - 
- - 

16-membered 

Spira- 
mycin 

111 

0.13 
0.15 
0.19 

0-23 

(3) 

- 

- 

macrolide 

Chalco- 
mycin 

0.30 
(4) 

- 
- 

0-45 

0.34 
- 

a lSC N.m.r. spectra were recorded for 0.1-0-5 hT solutions in 
CDCl, on a Varian XL-100-15 F.T. spectrometer equipped with a 
Varian 630/1 computer. For atoms with short T ,  values 
(< 0.4 s) the inversion recovery technique was employed while 
longer relaxation times were measured by progressive saturation. 
Reproducibility of the measured T ,  values was & 5-10 %. The 
TI  values were computed in two steps. First, all individual 
nuclei were fitted by a two-parameter non-linear least-squares 
program to the following equation (R. Freeman and H. D. W. Hill, 
J .  Chena. Phys. ,  19’71, 54, 3367). 

Y ( t )  = Yco [1 - exP(--tlT,)I/P - k exP(--tlT,)l 
In  the second step a multiparameter fitting was done to eliminate 
minor variations in amplification factors, etc. during the measure- 
ments. Thus all the nuclei were fitted simultaneously with the 
starting parameters determined in the first step. b The average 
hexose-macrolide N T ,  ratio seems to be concentration-dependent. 
Chalcomycin was examined in 0.4 M solution (mycinose/macro- 
lide ring N T ,  = 1.5) and tylosin in 0.25 M solution (mycinose/ 
macrolide ring N T ,  = 2.3). 

molecules. Since mycinose is attached to the aglycones by 
means of an -0-CH,- linkage i t  has faster internal re- 
orientation than the other rings in analogy with the relaxa- 
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tion behaviour of the terminal galactose unit of stachy~se.~a 
Furthermore, it  is important to note that in chalcomycin 
(4) and spiramycin I11 (3), as a result of the difference in 
ring size, the chalcose and forosamine carbon atoms show 
higher N T ,  values than the macrolide carbon atoms. On 
the basis of our previous study4 C-15 and C-5’ of the chalcose 
unit of (4) could not be distinguished. The measured T ,  
values for these resonances (68.5 p.p.m. ; 0.25, and 67.5 
p.p.m. ; 0.35 s) permit an unambiguous assignment to be 
made (Table). The lower-field shift must be attributed to 
C-15 and the higher field resonance to the chalcose carbon 
atom. 3 

n 

H 

mycamse 

mycinose - 

FIGURE. l*C Spin-lattice relaxation times for tylosiii (1) (in sec) 
(underlined numbers). Other numbers designate the carbon 
chain. 

In the case of tylosin (l), leucomycin A, (2), and spir- 
amycin I11 (3) a mycarosyl-mycaminose disaccharide unit 
is attached to the respective aglycones. The mycaminose 
carbon atoms cannot be recognized in these compounds 
since the corresponding T ,  values are shortened by the pre- 
sence of a mycarose unit. In view of the terminal dis- 
position of mycarose, the carbon atoms of this sugar unit 
show slightly longer T, values (Table) than the mycaminose 
carbon atoms of these molecules. However, these differ- 
ences are only small and they suggest that care should be 
exercised in similar cases when T ,  is used in resonance 
assignments. 

The resonance identification technique described in this 
investigation should be of great help in the 13C n.m.r. 
spectral analysis of a large variety of antibiotics and other 
natural products. 
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