The Diphenylmethyleneaminomagnesium Bromide Tetrahydrofuran Adduct $\mathrm{Mg}_{2} \mathrm{Br}_{2}(\mathbf{T H F})_{2}\left(\mu-\mathrm{N}: \mathrm{CPh}_{2}\right)_{2}(\mu-\mathrm{THF}) ; \boldsymbol{X}$-Ray Crystal Structure

By Kenneth Manning, Elizabeth A. Petch, Harrison M. M. Shearer, and Kenneth Wade* (Chemistry Department, Durham University Science Laboratories, South Road, Durham DH1 3LE)

and Graham Whitehead
(Science Department, College of Technology, Darlington)

Summary Two tetrahydrofuran (THF) adducts of diphenylmethyleneaminomagnesium bromide have been isolated, of formulae $\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{~N}: \mathrm{CPh}_{2}\right)_{2}(\mathrm{THF})_{3}$ and $\mathrm{Mg}_{2}{ }^{-}$ $\mathrm{Br}_{2}\left(\mathrm{~N}: \mathrm{CPh}_{2}\right)_{2}(\mathrm{THF})_{2}$: an X-ray crystallographic study of the former has shown it to contain bridging THF molecules, attached to the magnesium atoms by unusually long bonds.

Diphenylmethyleneaminomagnesium bromide, MgBr ($\mathrm{N}: \mathrm{CPh}_{2}$), prepared in ether solution either from PhCN and PhMgBr , or from $\mathrm{Ph}_{2} \mathrm{CNH}$ and $\mathrm{Pr}^{1} \mathrm{MgBr}$, reacts with an excess of tetrahydrofuran (THF) to afford a pale yellow crystalline adduct of composition $\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{~N}: \mathrm{CPh}_{2}\right)_{2}(\mathrm{THF})_{3}$ (I), an X-ray crystallographic study of which has revealed some unusual features.

Crystals of (I) are monoclinic, with $a=17 \cdot 819, b=$ $10.647, c=22.051 \AA, \beta=112.86^{\circ}$, space group $C 2 / c$, $Z=4$. The intensity data were collected on a Hilger and Watts four-circle diffractometer, using Zr-filtered Mo radiation, to a limit of $\theta=23^{\circ}$. The structure was solved by means of the Patterson function and refined by fullmatrix least-squares methods to $R=0.06$ for the 2029 reflections with net counts $\geqslant 2 \sigma$.

The molecules of (I) (see Figure) contain two MgBr (THF) units bridged not only by two $\mathrm{N}: \mathrm{CPh}_{2}$ units, but also by one tetrahydrofuran molecule linked symmetrically (on the molecular 2 -fold axis, which coincides with a crystal 2 -fold axis) to both metal atoms by unusually long bonds ($2 \cdot 45 \AA$; $c f .2 \cdot 07 \AA$ for the bonds to the terminal THF molecules, and $c f .3 \cdot 25 \AA$, the minimum distance expected ${ }^{1}$ for nonbonded magnesium and oxygen atoms). The length of these bonds
suggests that they fall into the 'secondary' classification of Alcock, ${ }^{2}$ and it appears significant that they are virtually co-linear with the terminal $\mathrm{Mg}-\mathrm{O}$ bonds $\left(\angle \mathrm{O}_{\mathrm{t}} \mathrm{MgO}_{\mathrm{b}}=173^{\circ}\right)$ The remaining bonds are of normal length, similar to those reported for related organomagnesium compounds. ${ }^{3-6}$

Figure. Molecular structure of $\mathrm{Mg}_{2} \mathrm{Br}_{2}(\mathrm{THF})_{2}\left(\mu-\mathrm{N}: \mathrm{CPh}_{2}\right)_{2}-$ (μ-THF). Interatomic distances: $\mathrm{Mg}-\mathrm{N}, 2.078(4) ; \mathrm{Mg}-\mathrm{Br}$, $2 \cdot 474(2) ; \mathrm{Mg}-\mathrm{O}_{\mathrm{t}}, 2 \cdot 066(5) ; \mathrm{Mg}-\mathrm{O}_{\mathrm{b}}, 2 \cdot 453(5) ; \mathrm{C}=\mathrm{N}, 1 \cdot 259(9)$; $\mathrm{Mg}-\mathrm{Mg}, 2 \cdot 886(3) \AA$; bond angles: $\mathrm{Mg}-\mathrm{N}-\mathrm{Mg}, 88 \cdot 0(2)$; $\mathrm{N}-\mathrm{Mg}-\mathrm{N}$, $89 \cdot 0(2) ; \mathrm{Mg}-\mathrm{O}_{\mathrm{b}}-\mathrm{Mg}, 72 \cdot 1(1) ; \mathrm{Br}-\mathrm{Mg}-\mathrm{O}_{\mathrm{t}}, 96.6(2) ; \mathrm{Br}-\mathrm{Mg}-\mathrm{O}_{\mathrm{b}}$, 87.4(1); $\mathrm{O}_{\mathrm{t}}-\mathrm{Mg}-\mathrm{O}_{\mathrm{b}}, 173 \cdot 1(2)^{\circ}$.

One of the tetrahydrofuran molecules of (I), presumably the bridging one, can be removed under reduced pressure, and also evidently separates when (I) is dissolved in benzene,

(II)
in which M (by cryoscopy) is 380 [(I) requires $M, 785]$. The residual $\mathrm{Mg}_{2} \mathrm{Br}_{2}\left(\mathrm{~N}: \mathrm{CPh}_{2}\right)_{2}(\mathrm{THF})_{2}$ (II), which can also be prepared directly from equimolar proportions of $\mathrm{MgBr}-$ ($\mathrm{N}: \mathrm{CPh}_{2}$) and THF, gives a different X-ray powder diffraction pattern, and presumably has the structure shown. Recrystallisation of (II) from THF regenerates (I).

In (I), the $(\mathrm{MgN})_{2}$ ring is nonplanar; the $\mathrm{Ph}_{2} \mathrm{C}: \mathrm{N}$ groups are folded slightly away from the bridging THF molecule (the dihedral angle between the MgNMg planes is 154°). The $\mathrm{BrMgO}_{\mathrm{t}}$ angle of 97° also reflects the presence of the bridging THF molecule; a larger $\mathrm{BrMgO}_{\mathrm{t}}$ angle would be expected in (II).
The cross-ring Mg - - Mg distance of $2.89 \AA$ in (I) may be compared with $\mathrm{Mg}-\mathrm{Mg}^{2}$ distances of $2.67 \AA$ in $\left(\mathrm{Et}_{2} \mathrm{Mg}\right)_{n},{ }^{7}$ $2.72 \AA$ in $\left(\mathrm{Me}_{2} \mathrm{Mg}\right)_{n},{ }^{8} 2.85 \AA$ in ($\left.\mathrm{Bu}^{\mathrm{t} O M g B r}, \mathrm{OEt}_{2}\right)_{2},{ }^{9} 2.94 \AA$ in $\left[\mathrm{Me}_{2} \mathrm{NC}_{2} \mathrm{H}_{4} \mathrm{~N}(\mathrm{Me}) \mathrm{MgMe}_{2},{ }^{4} 3 \cdot 20 \AA\right.$ in $\mathrm{Mg}_{4} \mathrm{Br}_{6} \mathrm{O}\left(\mathrm{OEt}_{2}\right)_{4},{ }^{10}$ $3.53 \AA$ in $\left(E t M g B r N E t ~ t_{3}\right)_{2},{ }^{3}$ and $3.73 \AA$ in $\left[\mathrm{EtMg}_{2} \mathrm{Cl}_{3}(\mathrm{THF})_{3}\right]_{2}{ }^{6}$ Short metal-metal distances ($<3 \AA$) are thus a feature of compounds with small bridging atoms like carbon, ${ }^{7,8}$ nitrogen, ${ }^{4}$ or oxygen, ${ }^{9}$ even though metal-metal bonding interactions are likely to be significant only in the case of electron-deficient alkyl bridges, ${ }^{11}$ which appropriately have the shortest $\mathrm{Mg}--\mathrm{Mg}$ distances. ${ }^{7,8}$ Bridging through bromine ${ }^{3,10}$ or chlorine ${ }^{6}$ allows a longer metal-metal distance.
(Received, lst December 1975; Com. 1333.)

[^0]
[^0]: ${ }^{1}$ A. Bondi, J. Phys. Chem., 1964, 68, 441.
 ${ }^{2}$ N. W. Alcock, Adv. Inorg. Chem. Radiochem., 1972, 15, 1.
 ${ }^{3}$ J. Toney and G. D. Stucky, Chem. Comm., 1967, I168.
 4 V. Magnusson and G. D. Stucky, Inorg. Chem., 1969, 8, 1427.
 ${ }^{5}$ J. Toney and G. D. Stucky, J. Organometallic Chem., 1970, 22, 241.
 ${ }^{6}$ J. Toney and G. D. Stucky, J. Organometallic Chem., 1971, 28, 5.
 7 E . Weiss, J. Organometallic Chem., 1965, 4, 101.
 ${ }^{8}$ E. Weiss, J. Organometallic Chem., 1964, 2, 314.
 ${ }^{9}$ P. T. Moseley and H. M. M. Shearer, Chem. Comm., 1968, 279.
 ${ }^{10}$ G. Stucky and R. E. Rundle, J. Amer. Chem. Soc., 1964, 86, 4821.
 ${ }^{11}$ R. E. Rundle and P. H. Lewis, J. Chem. Phys., 1952, 20, 132; K. Wade, 'Electron Deficient Compounds,' Nelson, London, 1971, p. 124; R. Mason and D. M. P. Mingos, J. Organometallic Chem., 1973, 50, 53.

