Beryllium-Nitrogen π-Bonding: the \boldsymbol{X}-Ray Structure of Bis(di-t-butylmethyleneamino)beryllium dimer, $\left[\operatorname{Be}\left(\mathbf{N}: \mathrm{CBu}_{2}^{\mathrm{t}}\right)_{2}\right]_{2}$

By John B. Farmer, Harrison M. M. Shearer, J. David Sowerby, and Kenneth Wade*
(Chemistry Department, Durham University Science Laboratories, South Road, Durham DH1 3LE)

Summary X-Ray crystal structure analysis of bis(di-tbutylmethyleneamino) beryllium dimer, $\left[\mathrm{Be}\left(\mathrm{N}: \mathrm{CBut}_{2}\right)_{2}\right]_{2}$, prepared from the ketimine $\mathrm{Bu}_{2} \mathrm{C}: \mathrm{NH}$ and di-isopropylberyllium, shows that it adopts a structure containing both bridging and terminal methyleneamino-groups, the latter attached to the 3 -co-ordinate metal atoms by $\mathrm{Be}-\mathrm{N}$ bonds only 150 pm long, the shortest yet reported for a solid beryllium-nitrogen compound.

Compounds containing beryllium-nitrogen multiple bonds have attracted much interest recently. ${ }^{1}$ Structural studies on the amino-derivatives $\left[\mathrm{Be}\left(\mathrm{NMe}_{2}\right)_{2}\right]_{3},{ }^{2} \mathrm{MBe}\left(\mathrm{NH}_{2}\right)_{3}(\mathrm{M}=\mathrm{K}$ or Rb$),{ }^{3}$ and $\mathrm{Be}\left[\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}{ }^{4}$ have shown their aminogroups to be attached to their co-ordinatively unsaturated beryllium atoms by short $\mathrm{Be}-\mathrm{N}$ bonds (157, 159, and 156 pm respectively), indicative of $\mathrm{N} \rightleftharpoons$ Be dative π-bonding. We here report the first structural study of a methyleneaminoderivative of beryllium, $\left[\mathrm{Be}\left(\mathrm{N}: \mathrm{CBu}_{2}^{\mathrm{t}}\right)_{2}\right]_{2}$, (I), which con-
tains both bridging and terminal methyleneamino groups, the latter attached to the 3 -co-ordinate metal atoms by the shortest $\mathrm{Be}-\mathrm{N}$ bonds yet found.

Figure. Skeleton of $\left[\mathrm{Be}\left(\mathrm{N}: \mathrm{CBu}_{2}\right)_{2}\right]_{2}$. Interatomic distances (pm): $\mathrm{Be}-\mathrm{N}_{\mu} 168 ; \mathrm{Be}-\mathrm{N}_{\mathrm{t}} 150 ; \mathrm{C}=\mathrm{N}_{\mu} 128 ; \mathrm{C}=\mathrm{N}_{\mathrm{t}} 127 ; \mathrm{Be} \cdots \mathrm{Be}$ 223. Bond angles (${ }^{\circ}$: $\mathrm{Be}-\mathrm{N}_{\mu}-\mathrm{Be}^{\prime} 83$; $\mathrm{N}_{\mu}-\mathrm{Be}-\mathrm{N}_{\mu}{ }^{\prime} 97 ; \mathrm{Be}^{\prime} \ldots$ $\mathrm{Be}-\mathrm{N}_{\mathrm{t}} 161 ; \mathrm{Be}-\mathrm{N}_{\mathrm{t}}=\mathrm{C} 161 ; \mathrm{N}_{\mathrm{t}}-\mathrm{Be}-\mathrm{N}_{\mu} 129 ; \mathrm{Be}-\mathrm{N}_{\mu}=\mathrm{C} 138$.

Compound (I) is readily prepared from $\mathrm{BePr}^{\mathbf{1}}{ }_{2}$ and $2 \mathrm{But}_{2} \mathrm{C}$: NH in diethyl ether, and crystallises from hexane as pale yellow needles, m.p. $220-230^{\circ} \mathrm{C}$ (decomp.), analysing satisfactorily for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{Be}_{2} \mathrm{~N}_{4}$. The crystals are monoclinic, with $a=1776.5, b=1526 \cdot 1$, and $c=1691.5 \mathrm{pm}$, $\beta=118 \cdot 52^{\circ}$, space group $C 2 / c, Z=4$. The intensity data were collected on a Hilger and Watts four-circle diffractometer, using Zr -filtered Mo radiation, to a limit of $\theta=22 \cdot 5^{\circ}$. The structure was solved by means of the Patterson function and refined by full-matrix least-squares methods to $R=$ $0 \cdot 127$ for the 1351 reflections with net counts $\geqslant 2 \sigma$.

The molecules of $\left[\mathrm{Be}\left(\mathrm{N}: \mathrm{CBu}_{2}\right)_{2}\right]_{2}$ are centro-symmetric (see Figure). The metal atoms are linked by bridging methyleneamino-units lying not, as expected, in the plane of the $(\mathrm{BeN})_{2}$ ring, but twisted about the $\mathrm{C}=\mathrm{N} \cdots \mathrm{N}=\mathrm{C}$ axis by 37°. Each metal atom also has one terminal methyleneamino ligand attached by nonlinear $\mathrm{C}=\mathrm{N}-\mathrm{Be}$ units; the
terminal ligands are bent progressively away from the $(\mathrm{BeN})_{2}$ plane in two stages, the angles $\mathrm{Be}^{\prime} \cdots \mathrm{Be}-\mathrm{N}_{\mathrm{t}}$ and $\mathrm{Be}-\mathrm{N}_{\mathrm{t}}=\mathrm{C}$ being 161°. These distortions from the expected structure can be ascribed to repulsions between the bulky tbutyl substituents, which prevent the skeletons of the bridging methyleneamino-units from lying in the $(\mathrm{BeN})_{2}$ plane, and also prevent the linear $\mathrm{C}=\mathrm{N} \rightleftharpoons \mathrm{Be}$ arrangements which would allow maximum dative π-bonding between the terminal methyleneamino-nitrogen atoms and the metal atoms. However, this slight departure from linearity does not lead to significant loss of multiple bond character in the terminal $\mathrm{N} \rightleftharpoons$ Be bonds, which are only 150 pm in length (cf. the bridging $\mathrm{Be}-\mathrm{N}$ bonds, 168 pm long. Other interatomic distances and bond angles are given beneath the Figure). Compound (I) thus adopts the type of structure deduced for compounds $\left[\operatorname{Be}\left(\mathrm{N}: \mathrm{CR}^{1} \mathrm{R}^{2}\right)_{2}\right]_{2}$ from their i.r. spectra, in which 'high' frequency (ca. $1730 \mathrm{~cm}^{-1}$) azomethine stretching absorptions, $v(\mathrm{C}=\mathrm{N})$, were taken to be indicative of the presence of linear $\mathrm{C}=\mathrm{N} \rightleftharpoons \mathrm{Be}$ units. ${ }^{5}$ This interpretation is essentially substantiated by the present work; (I) absorbs at $1721 \mathrm{~cm}^{-1}\left[v(\mathrm{C}=\mathrm{N})_{\mathrm{t}}\right]$ and $1631 \mathrm{~cm}^{-1}$ $\left[v(\mathrm{C}=\mathrm{N})_{\mu}\right]$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (I) (toluene solution) contains an incompletely resolved doublet ($\tau 8.69,8.71$) attributable to the terminal ligands, and a singlet (τ 8.77) attributable to the bridging ligands, of appropriate relative intensities ($1: 1: 2$).

The magnesium and zinc analogues of (I) have similar spectra, e.g. $\left[\mathrm{Mg}\left(\mathrm{N}: \mathrm{CBut}_{2}\right)_{2}\right]_{2}$ (from $\mathrm{MgEt}_{2}+2 \mathrm{Bu}_{2} \mathrm{C}: \mathrm{NH}$) has $v(\mathrm{C}=\mathrm{N}) 1664$ and $1605 \mathrm{~cm}^{-1}$, while $\left[\mathrm{Zn}\left(\mathrm{N}: \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right]_{2}$ (from $\mathrm{ZnMe}_{2}+2 \mathrm{Bu}_{2}{ }_{2} \mathrm{C}: \mathrm{NH}$, or from $\mathrm{ZnCl}_{2}+2 \mathrm{Bu}_{2}{ }_{2} \mathrm{C}: \mathrm{NLi}$) has $\nu(\mathrm{C}=\mathrm{N}) 1683$ and $1585 \mathrm{~cm}^{-1}$, and are believed to adopt similar structures.

Compound (I) thus establishes for a Group II metal the use of methyleneamino groups $\mathrm{R}_{2} \mathrm{C}: \mathrm{N}$ as probes for the study of $\mathrm{N} \rightleftharpoons \mathrm{M}$ dative π-bonding, hitherto applied to Group III $\left[(\text { mesityl })_{2} \mathrm{BN}: \mathrm{CPh}_{2}{ }^{6}\right.$ and $\left.\operatorname{LiAl}\left(\mathrm{N}: \mathrm{CBu}^{2}\right)_{4}{ }^{7}\right]$ and Group IV $\left[\mathrm{M}\left(\mathrm{N}: \mathrm{CPh}_{2}\right)_{4}(\mathrm{M}=\mathrm{Si}, \mathrm{Ge} \text { or } \mathrm{Sn})^{10}\right]$ examples.

We thank the S.R.C. for grants (to J.B.F. and J.D.S.)
(Received, 19th January 1976; Com. 048.)

[^0]
[^0]: ${ }^{1}$ G. E. Coates and G. L. Morgan, Adv. Organometallic Chem., 1970, 9, 195; D. J. Cardin, 'M.T.P. Internat. Rev. Sci., Inorg. Chem. Series 1', 1972, 1, 33; Series 2, 1975, 1, 29; N. A. Bell, Adv. Inorg. Chem. Radiochem., 1972, 14, 255.
 ${ }^{2}$ J. L. Atwood and G. D. Stucky, J. Amer. Chem. Soc., 1969, 91, 4426.
 ${ }^{8}$ M. G. B. Drew, J. E. Goulter, L. Guemas-Brisseau, P. Palvadeau, J. Rouxel, and P. Herpin, Acta Cryst., 1974, B30, 2579.
 ${ }^{4}$ A. H. Clark and A. Haaland, Acta Chem. Scand., 1970, 24, 3024.
 ${ }^{5}$ C. Summerford, K. Wade, and B. K. Wyatt, J. Chem. Soc. (A), 1970, 2016.
 ${ }^{6}$ G. J. Bullen, J.C.S. Dalton, 1973, 858.
 ${ }^{7}$ H. M. M. Shearer, R. Snaith, J. D. Sowerby, and K. Wade, Chem. Comm., 1971, 1275.
 ${ }^{8}$ N. W. Alcock and M. Pierce-Butler, J.C.S. Dalton, 1975, 2469.

