A 1,5-Diazabicyclo[3.3.3]undecane Derivative with Almost Planar Bridgehead Nitrogens \dagger

By Roger W. Alder* and Nigel C. Goode
(School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 ITS)
Trevor J. King
(Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD)
and John M. Mellor and Barry W. Miller
(Department of Chemistry, University of Southampton, Southampton SO9 5NH)

Summary The preparation, structure, and photoelectron spectrum of the naphtho-fused 1,5-diazabicyclo[3.3.3]undecane, (1), are reported.

Compounds in which selected bond angles are expanded by strain are much less common than those with compressed bond angles, but derivatives of bicyclo[3.3.3]undecane show unusual properties due to this feature; ${ }^{1,2}$ we report here an example with two bridgehead nitrogens.

The reaction of 1,3 -dibromopropane with 1,8 -diaminonaphthalene in DMF in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ gives (1) in ca. 5% yield, along with a number of other compounds; (1) is eluted first on $\mathrm{Al}_{2} \mathrm{O}_{3}$ chromatography of the product
\dagger No reprints available.
mixture. (1) m.p. $66-68^{\circ} \mathrm{C}$ is yellow, $\lambda_{\max } 380, \log \epsilon 2.35$ in $2,2,4$-trimethylpentane. The geometry of the molecule was determined by X-ray crystallography. Crystal data: orthorhombic, $P 2_{1} 2_{1} 2_{1}$ (from systematic absences) with $a=6.998(1), b=8.546(1), c=21 \cdot 840(3) \AA$. Reflections were measured with Mo- K_{α} radiation $(\lambda=0.71069 \AA$) out to $\theta=30^{\circ}$ on a Hilger-Watt four circle diffractometer. 1726 planes were measured of which 1394 had net counts $>3 \sigma$ and were used in the refinement. The structure was solved routinely using MULTAN. Hydrogens (located from a difference map) were included and refined isotropically, the other atoms anisotropically. The variables were refined in three blocks and at convergence R was $0 \cdot 047$. The cal-
culated e.s.d.'s of bond lengths and angles not involving hydrogen were $c a .0 .004 \AA$ and 0.27°. The structure is shown in the Figure. It can be seen that the nitrogens ($2.89 \AA$ apart) are almost planar; formally the lone pairs

(11): $m=n=3$
(2): $m=n=2$
have $\mathbf{9 8} \% p$ character. As expected the $\mathrm{CH}_{2}-\mathrm{N}$ bonds are significantly shorter than normal. In solution n.m.r. spectra are consistent with rapid boat-chair \rightleftharpoons chair-boat interconversion in the alicyclic eight-membered ring above $-100^{\circ} \mathrm{C}$.

The photoelectron spectrum of (1) shows five ionisation potentials below 10.5 eV , at $6.90,7.76,8.13,8 \cdot 61$, and 9.52 eV . The latter three bands are assigned to π-ionisations by comparison with naphthalene ($8.15,8.90$, and 10.02 eV) and several other 1,8 -diaminonaphthalenes we have examined. For comparison (2) (m.p. 83-85 ${ }^{\circ} \mathrm{C}$, first absorption band at $323 \mathrm{~nm}, \log \epsilon 3 \cdot 25$, in 2,2 , 4-trimethylpentane, prepared in good yield from 1,2-dibromoethane and 1,8-diaminonaphthalene) has photoelectron ionisation peaks at $7 \cdot 56,8 \cdot 01$, ca. $8 \cdot 8$ (double intensity) and 9.70 eV . We assign n_{+}at 7.56 and n_{-}at $c a .8 .8 \mathrm{eV}$, giving an n_{+} / n_{-}splitting of $c a .1 .2 \mathrm{eV}$ in good agreement with that (1.22 eV) reported ${ }^{3}$ for $1,5-$ diazabicyclo[3.2.2]nonane. The average lone-pair ionisation potential for ($\mathbf{1}$), $7 \cdot 3 \mathrm{eV}$, is therefore considerably lower than that for (2) $(8.2 \mathrm{eV})$ or the reported ${ }^{4} n$ ionisation potential for benzoquinuclidine $(8.35 \mathrm{eV})$. We ascribe this difference to the nearly pure p character of the lone pairs in (1). Of the two n ionisation bands for (1), only that at

Figure. Structure of the naphtho-fused 1,5-diazabicyclo[3.3.3]undecane. Selected bond lengths (\AA); $\mathrm{N}(1)-\mathrm{C}(1), 1-430$; N(2)$\mathrm{C}(8), 1 \cdot 421 ; \mathrm{N}(1)-\mathrm{C}(11), 1 \cdot 454 ; \mathrm{N}(2)-\mathrm{C}(13), 1 \cdot 447 ; \mathrm{N}(1)-\mathrm{C}(14)$, $1-461 ; \mathrm{N}(2)-\mathrm{C}(16), 1-456$. Selected bond angles $\left({ }^{\circ}\right) ; \mathrm{C}(1)-\mathrm{N}(1)-$ $\mathrm{C}(11), 116.7 ; \mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(14), 118 \cdot 5$; $\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(14), 120 \cdot 2$; $\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(13), \quad 118.7 ; \mathrm{C}(8)-\mathrm{N}(2)-\mathrm{H}(16), 118.6 ; \mathrm{C}(13)-\mathrm{N}(2)-$ $\mathrm{C}(16), 118 \cdot 9$.
7.76 eV shows vibrational structure and a strong 0,0 band similar to that reported ${ }^{2}$ for l-azabicyclo[3.3.3]undecane. The radical cation formed is probably in the $n_{+}(\uparrow) n_{-}(\uparrow \downarrow)$ state and has an equilibrium geometry close to that of the parent amine. The ground state of the radical cation (formed in the 6.90 ev ionisation) is then $n_{+}(1 \downarrow) n_{-}(1)$ and probably has an equilibrium geometry with inward pyramidalised nitrogens.
(Received, 22nd January 1976; Com. 064.)
${ }^{1}$ M. Doyle, W. Parker, P. A. Gunn, J. Martin, and D. D. MacNicol, Tetrahedron Letters, 1970, 3619; W. Parker, R. L. Tranter, C. I. F. Watt, L. W. K. Chang, and P. von R. Schleyer, J. Amer. Chem. Soc., 1974, 96, 7121 ; J. C. Coll, D. R. Crist, M. d. C. G. Barrio, and N. J. Leonard, ibid., 1972, 94, 7092; A. H.-J. Wang, R. J. Missavage, S. R. Bryn, and I. C. Paul, ibid., p. 7100; A. M. Halpern, ibid., 1974, 96, 7655.
${ }_{2}$ D. H. Aue, H. M. Webb, and M. T. Bowers, J. Amer. Chem. Soc., 1975, 97, 4136.
${ }^{3}$ S. F. Nelsen and J. M. Buschek, J. Amer. Chem. Soc., 1974, 96, 7930.
${ }^{4}$ J. P. Maier and D. W. Turner, J.C.S. Faraday II, 1973, 521.

