Cycloaddition of Dienophiles to the Benzene Nucleus of Tricyclo[6.2.0.0 ${ }^{3,6}$]deca-1,3(6)4,7,9-pentaene

By Fumio Toda* and Koichi Tanaka
(Department of Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan)

Summary Cycloaddition of dimethyl fumarate, trans-1,2- hydride to the benzene nucleus of (1) afforded (2a), (2b), dibenzoylethylene, dimethyl maleate, and maleic an- (5a), and (5b), respectively.

Cycloadditions of dienophiles to the cyclobutene ring of (1) ${ }^{1}$ and benzocyclobutene ${ }^{2}$ have been reported. However, it might be expected that a dienophile could add to the 3,8-positions of the benzene nucleus of (1), because such attack would destroy the antiaromatic nature of both the four-membered rings of (1). We now report examples of such cycloadditions.

Heating a $1: 1$ mixture of (1) and dimethyl fumarate under reflux in o-xylene under N_{2} for 0.5 h afforded syn(2a) \dagger in 75% yield, m.p. $222-223^{\circ} \mathrm{C}$; $\nu_{\max } 1735 \mathrm{~cm}^{-1}$ (ester); $\lambda_{\max } 248(\epsilon 21,000)$ and $320 \mathrm{~nm}(35,800)$; $\tau 2 \cdot 5-3 \cdot 2(20 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.75(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.53(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $9.10(18 \mathrm{H}$, $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$). Similarly, reaction of (1) with trans-1,2-dibenzoylethylene afforded (2b) (49%), m.p. $251-252^{\circ} \mathrm{C}$.

The spatial relationship between the $\mathrm{CO}_{2} \mathrm{Me}$ groups and the cyclobutene ring in (2a) was shown by its reaction with Br_{2} which afforded the γ-lactone (3) (89%), m.p. $211{ }^{\circ} \mathrm{C}$ (decomp.); $\nu_{\max } 1795$ (lactone) and $1730 \mathrm{~cm}^{-1}$ (ester). The two Ph groups on the cyclobutane ring in (3) must be trans, because a mutual shielding was not observed in the n.m.r. spectrum. Molecular models of the alternative structure (4) show that it cannot give the γ-lactone because the $\mathrm{CO}_{2} \mathrm{Me}$ group is too far from the cyclobutene carbon to react. Molecular models also show that the stereospecificity of the addition of dimethyl fumarate to (1) is due to steric repulsion between the $\mathrm{CO}_{2} \mathrm{Me}$ and Bu^{t} groups. This assumption is supported by the following experiments.

Similar treatment of (1) with dimethyl maleate as with dimethyl fumarate afforded (6a) as the major product, orange needles (79%), m.p. $239-240^{\circ} \mathrm{C}$; $\nu_{\text {max }} 1760$ and $1740 \mathrm{~cm}^{-1}$ (ester); $\lambda_{\max }$ (tetrahydrofuran) 316 ($\epsilon 38,400$) and $414 \mathrm{~nm}(2100) ; \tau 2.5-3.5(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.58$ and 6.12 ($\mathrm{IH}, \mathrm{d}, J 3 \mathrm{~Hz}, \mathrm{CH}$), 6.49 and $6.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and 8.88 and $9 \cdot 43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, in addition to (5a), (7\%), m.p. 265-266 ${ }^{\circ} \mathrm{C}$; $\nu_{\max } 1740$ and $1715 \mathrm{~cm}^{-1}$ (ester), $\lambda_{\max } 250(\epsilon 20,400)$ and $320 \mathrm{~nm}(30,600) ; \tau 2 \cdot 2-3.2(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5 \cdot 50$ and $6.02(1 \mathrm{H}, \mathrm{d}, J \mathrm{l} 2 \mathrm{~Hz}, \mathrm{CH}), 6.25$ and $6.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and 9.05 and $9 \cdot 10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$. This result shows that approach of dimethyl maleate to the benzene nucleus of (1) is sterically hindered. This is again supported by the reaction of (1) with the sterically less hindered maleic anhydride which affords (5 b) as the major product (46%), m.p. $241-242{ }^{\circ} \mathrm{C}$, in addition to (6 b), orange prisms (19%), m.p. $231-232^{\circ} \mathrm{C}$.

In contrast with the previously reported stable benzocyclobutenes, ${ }^{1}$ ($\mathbf{6 a}$) and ($\mathbf{6 b}$) were slightly sensitive to

(1)

(3)

a: $\mathrm{R}=\mathrm{OMe}$
$b_{;} R R=0$

(6)
$a_{i} R=O M e$
$b_{i} R R=0$
oxygen even in the crystalline state and gradually changed into (7a), m.p. $214-215^{\circ} \mathrm{C}$; which showed a new CO i.r. absorption at $1680 \mathrm{~cm}^{-1}$, and (7b), m.p. $263-264 \cdot 5^{\circ} \mathrm{C}$, with new i.r. absorptions at 1670 and $1650 \mathrm{~cm}^{-1}$. However, the conformations of (6) and (7) were not determined.
(Received, 29th December 1975; Com. 1425.)
\dagger I.r., u.v., and n.m.r. spectra were measured for Nujol mulls and solutions in CHCl_{3}, and CDCl_{3}, respectively, unless otherwise noted. All new compounds gave satisfactory elemental analyses and mass spectral data. In their mass spectra, (2a), (2b), (5a), and ($\mathbf{5 b}$) all showed the fragment ion at $m / e 542$ as the base peak, which is presumably attributable to (1) formed by a retro-Diels-Alder reaction.

[^0]
[^0]: ${ }^{1}$ F. Toda and N. Dan, J.C.S. Chem. Comm., 1976, 30.
 ${ }^{2}$ A. Huth, H. Straub, and E. Müller, Annalen, 1973, 1893.

