
Controlled Formation of Allenes with Organocuprates

By Pierre Crabbé,* Eliezer Barreiro, Jean-Marie Dollat, and Jean-Louis Luche

(Laboratoire de Chimie Organique, C.E.R.M.O., Université Scientifique et Médicale, 38041 Grenoble, France)

Summary Precise conditions, that allow the preparation from prop-2-ynylic acetates of either non-alkylated allenes or alkylated allenes in good yields using organocuprate reagents, are reported.

THE potential utility of the propadiene unit in organic synthesis and its unusual reactivity,¹ make it desirable to develop efficient procedures for preparation of compounds containing this unit.

In the past, we reported the preparation of alkylated (4) and non-alkylated (5) allenes by the reaction of lithium dialkylcopper reagents (1) with acetylenic acetates (2).^{2,3} A mechanism was proposed later⁴ which may explain the formation of (4) and (5). An important practical problem

was to find out the appropriate methodology giving rise *at* will to one or the other allenic compound. We report now our results in this field.

Based on the proposed reaction mechanism involving an organometallic intermediate of type $(3),\dagger$ it was expected that conditions favouring the transfer of an alkyl group from the copper to the carbon atom would furnish the alkylated allene (4). Conversely, inhibition of such a transfer followed by the addition of a quenching reagent should lead to the non-alkylated allene (5).

TABLE					
	Allenes (4) and (5)		Reaction times/h		
: (5)	Ratio (4) : 23:77 5:95 10:90 25:75 28:72	Total yield (%) 90 95 75 80 80	LiAlH4 ⁸ 1.5 1.5 2 2 2 2	R ¹ ₂ CuLi 1 ^b 2 ^a 3 ^a 2 ^a 1 ^a	Ester (2a) (2a) (2b) (2c) (2d)
	$\begin{array}{c} 23:77\\5:95\\10:90\\25:75\end{array}$	90 95 75 80 80	$ \begin{array}{c} 1\cdot5\\1\cdot5\\2\\2\\2\end{array} $	1 b 2a 3a 2a 1a	(2a) (2a) (2b) (2c) (2d)

Treatment of prop-2-ynylic acetates with lithium dialkylcopper (1.2 equiv.) for 2 h (see below) at ca. -10 °C in ether gave the alkylated propadienes (4) in high yield. The ratio of compounds (4): (5) was ca. 95: 5 with the exception of the ester (2a), for which the ratio was only 3:1. When the reactions were carried out at room temperature, the percentage of compounds (4) was always 95%. In contrast, lowering the temperature slowed down the rearrangement process sufficiently to permit hydrolysis of the intermediates (3), thus giving access to the non-alkylated allenes (5). For instance, addition of the prop-2-ynylic ester (2a) to lithium dimethylcopper (1, R = Me; 2 equiv.) at -50 °C, stirring for 1 h, and addition of $1 \times HCl$ in MeOH at $-75 \degree C$, afforded mainly the non-alkylated allene (5a) (68%) and only 32% of (4a). Unfortunately, the reaction mixture contained unidentified compounds and the total yield of the allenes was rather low (ca. 37%). The process for the

 \dagger Formula (3) representing the organometallic intermediate should be considered as a 'working hypothesis' and not necessarily a true physical entity involving copper with a formal oxidation state of +3. Representation by an ion-pair, such as a dialkylcopper anion and an allylic cation, was ruled out because of stereochemical considerations, since optically active allenes have been obtained with this reagent (see ref. 4).

formation of non-alkylated allenes (5) has been improved as follows. Esters (2) are added to lithium dimethylcopper (2 equiv.) in ether at -75 °C, and stirred at this temperature for 1-3 h (see Table). This is followed by treatment with $LiAlH_4$ (8 equiv.) in tetrahydrofuran. The colour of the reaction mixture changes from orange to dark-brown after stirring for an additional 2 h at -75 °C. The usual work-

up affords the allenes (5). Typical results, by g.l.c. analysis, are listed in the Table.

The above observations, supporting the intervention of an organometallic intermediate of type (3),^{4,5} can probably be extrapolated to organocuprate reactions with entities different from prop-2-ynylic acetates.

(Received, 12th January 1976; Com. 018.)

- ² P. Rona and P. Crabbé, J. Amer. Chem. Soc., 1969, 91, 3289.
 ³ P. Crabbé and H. Carpio, J.C.S. Chem. Comm., 1972, 904.
 ⁴ J. L. Luche, E. Barreiro, J. M. Dollat, and P. Crabbé, Tetrahedron Letters, 1975, 4615.
 ⁵ See also: J. K. Crandall, P. Battioni, J. T. Wehlacz, and R. Bindra, J. Amer. Chem. Soc., 1975, 97, 7171.

¹ See: T. F. Rutledge, 'Acetylene and Allenes,' Reinhold, New York, 1969.