
Preparation of Bicyclo[4.2.0]octa-2,4-dien-7-one *via* Trapping with Benzylideneacetoneiron Tricarbonyl

By MAURICE BROOKHART,* GREGORY O. NELSON, GARY SCHOLES, and R. A. WATSON (Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27514)

Summary The synthesis of bicyclo[4.2.0]octa-2,4-dien-7one has been accomplished by trapping this unstable tautomer with benzylideneacetoneiron tricarbonyl to form the stable bicyclo[4.2.0]octa-2,4-dien-7-oneiron tricarbonyl which was then oxidatively cleaved with ceric ammonium nitrate at -30 °C to yield the title ketone.

RECENTLY we have shown that benzylideneacetoneiron tricarbonyl $[BDA-Fe(CO)_3]$ is a useful reagent for selectively

trapping as iron tricarbonyl complexes the bicyclic tautomers of 1,3,5-cyclo-octatriene and its derivatives, bicyclo-[6.2.0]deca-2,4,6-triene and bicyclo[6.1.0]nona-2,4,6-triene.¹ We now report the use of enoneiron tricarbonyl reagents for trapping, isolation, and study of the previously uncharacterized bicyclo[4.2.0]octa-2,4-dien-7-one (2). Reaction of either BDA-Fe(CO)₃ or 3-penten-2-oneiron tricarbonyl with 2,4,6-cyclo-octatrienone (1)² in benzene at 55 °C followed by crystallization of the crude product from pentane affords pale yellow crystals of the bicyclo[4.2.0]octa-2,4-diene-7oneiron tricarbonyl (3) in ca. 50% yield. Use of 3-penten-2-oneiron tricarbonyl proved more convenient in that following exchange the free 3-penten-2-one could be removed at reduced pressure. Complex (3) showed ¹H n.m.r. signals[†] (CDCl₃) at δ 2·93 (1-H), 3·47 (2-H), 5·47 (3-H), 5·65 (4-H), 3·11 (5-H), 3·47 (6-H), 2·11 (8a-H), 2·66 (8b-H) and ¹³C n.m.r. signals at 210·9 (iron carbonyl), 204·7 (ketone carbonyl), 86·8, 85·0, 68·0, 64·8, 58·0, 48·0 and 30·1 p.p.m. downfield relative to Me₄Si.

Oxidative cleavage of (3) with ceric ammonium nitrate adsorbed on alumina in ether at -30 °C followed by filtration and low temperature (-20 °C) flash distillation (10^{-4} mmHg) led to isolation of a pure sample of the bicyclic dienone (2). The dienone (2) showed ¹H n.m.r. signals (CDCl₃, -30 °C) at δ 6.05 (1H), 5.91 (2H), 5.56 (1H), 4.23 (1H), 3.00—3.81 (3H).

Upon warming to 0 °C (2) undergoes a clean first-order isomerization to the trienone (1). From rate measurements using ¹H n.m.r. at 0 °C we find $k_{-1} = 5.7 \times 10^{-4} \text{ s}^{-1}$ with $\Delta G^{\ddagger} = 20.0$ kcal mol⁻¹. Huisgen has measured k_1 from tetracyanoethylene trapping of (2) at 44 °C (4.9 \times 10⁻⁴ s⁻¹), 50 °C (9.8 × 10⁻⁴ s⁻¹) and 56.7 °C (19.9 × 10⁻⁴ s⁻¹).³ Extrapolation of this data to 0 °C yields a value of $k_1 = 2.0$ \times 10⁻⁶ s⁻¹ and thus an estimated $K_{\rm eq}$ at 0 °C of ca. 0.0035, $\Delta G = 3.1 \text{ kcal mol}^{-1}$. Assuming $\Delta G = 3.1 \text{ kcal mol}^{-1}$ at 25 °C, $K_{eq} = 0.0052$. This is substantially lower than Huisgen's value of 0.05 estimated from provisional ¹H n.m.r. data.³ From FT-¹H n.m.r. measurements of the relative intensities of the δ 2.87 signal for (1) and the δ 4.23 signal for (2) we estimate K_{eq} at 25 °C to be ca. 0.007, $\Delta G = 2.9$ kcal mol⁻¹, which is in close agreement with that estimated from the measured values of k_1 and k_{-1} .

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support and the National Science Foundation for a grant.

(Received, 30th December 1975; Com. 1435.)

[†] The chemical shifts of 1-H—5-H were assigned by double resonance and deuterium decoupling experiments on 6,8,8'-trideuteriobicyclo[4.2.0]octa-2,4,dien-7-oneiron tricarbonyl synthesized from 2,8,8'-tri-deuterio-2,4,6-cyclo-octatrienone and 3-penten-2-oneiron tricarbonyl.

¹G. Scholes, C. R. Graham, and M. Brookhart, J. Amer. Chem. Soc., 1974, 96, 5666.

² A. C. Cope and B. D. Tiffany, J. Amer. Chem. Soc., 1951, 73, 4158; A. C. Cope, S. F. Schaeren, and E. R. Trumbull, *ibid.*, 1954, 76, 1096.

³ R. Huisgen, F. Mietzsch, G. Boche, and H. Seidl, Chem. Soc. Spec. Publ., 1965, 19, 3.