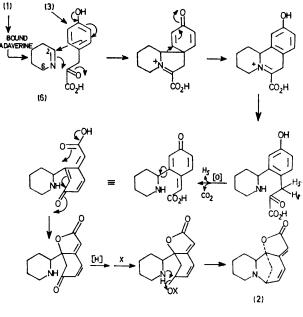

Biosynthesis of Securinine: the Mode of Incorporation of Lysine

By W. MAREK GOLEBIEWSKI, PETER HORSEWOOD, and IAN D. SPENSER* (Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada)


Summary The piperidine ring of securinine is derived from a $C_{5}N$ unit, Δ^{1} -piperideine, which originates from lysine in non-symmetrical fashion by loss of the carboxy carbon and the α -amino group.

SECURININE (2), the major alkaloid of Securinega suffruticosa Rehd., originates from two amino acid fragments.¹ One of these, derived from tyrosine (3), yields the C_6-C_2 unit of the alkaloid (light lines).¹⁻³ All the carbon atoms of tyrosine other than the carboxy group are maintained,² the α -carbon supplies the lactone carbon atom of the alkaloid,^{1,2} and the *pro-R* proton from the β -carbon of tyrosine is retained in the alkaloid whereas the *pro-S* proton is lost.³

SCHEME 1

piperidine alkaloids whose C_5N units are derived from lysine in non-symmetrical fashion⁴ (*cf.*, anabasine, sedamine, *N*-methylpelletierine), or whether it belongs to the group of alkaloids whose C_5N units originate from lysine in a symmetrical manner (*e.g.*, the lupine, ⁵ decodon, ⁶ and lycopodium⁷ alkaloids).

SCHEME 2

The second fragment, a C_5N unit (heavy lines), is presumably derived from lysine,^{1,2} via cadaverine. Specific incorporation of radioactivity from [1-¹⁴C]cadaverine into securinine (2), in the predicted symmetrical manner (50% of label at *) has been demonstrated,² but the mode of incorporation of lysine has not yet been determined. In particular, it is not known whether securinine is one of the

In separate experiments $[2^{-14}C]$ -DL-lysine $(100 \,\mu\text{Ci}, 3 \,\text{mCi} \,\text{mmol}^{-1})$, New England Nuclear) and $[2^{-14}C]$ - Δ^{1-} piperideine $(30 \,\mu\text{Ci}, 4.7 \,\text{mCi} \,\text{mmol}^{-1})$, prepared⁸ from $[2^{-14}C]$ -DL-lysine) were administered to *Securinega* plants by the wick method. After 3 days in contact with tracer, the plants were harvested and securinine was extracted. The active sample was diluted with inactive carrier, crystallized to constant specific activity $(1.5 \times 10^5 \,\text{dpm} \,\text{mmol}^{-1})$ and

 $3 \cdot 1 \times 10^4$ dpm mmol⁻¹, respectively) and degraded² to the benzquinolizidine (4) and thence to phthalic anhydride (5) (Scheme 1). The molar specific activity of the samples of phthalic anhydride obtained $(1.4 \times 10^5 \text{ and } 3.0 \times 10^4)$ dpm mmol⁻¹, respectively) indicated that in each case more than 90% of the activity of securinine had been localized at the asterisked carbon atom (*i.e.*, at the only carbon atom of the non-tyrosine derived portion of securinine retained in phthalic anhydride), which is thus derived predominantly if not exclusively from C-2 of lysine and from C-2 of Δ^{1} - piperideine.

Securinine is thus shown to be one of the piperidine alkaloids whose derivation from lysine avoids a symmetrical intermediate.⁴ It is the first amongst this group of alkaloids whose nitrogen atom is common to two rings. All other lysine-derived alkaloids whose nitrogen lies at a ring junction (e.g., lupine,⁵ decodon⁶ and lycopodium⁷ alkaloids) incorporate lysine by way of a symmetrical intermediate.

A further tracer experiment throws light on the origin of the nitrogen atom of securinine. This nitrogen might be supplied by the lysine-derived⁹ or by the tyrosine-derived¹⁰

¹ R. J. Parry, Tetrahedron Letters, 1974, 307. ² U. Sankawa, K. Yamasaki, and Y. Ebizuka, Tetrahedron Letters, 1974, 1867.

³ R. J. Parry, J.C.S. Chem. Comm., 1975, 144.

⁴ E. Leistner and I. D. Spenser, *J. Amer. Chem. Soc.*, 1973, 95, 4715, and references therein.
⁵ H. R. Schütte in 'Biosynthese der Alkaloide,' eds. K. Mothes and H. R. Schütte, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969, p. 324. ⁶ S. H. Koo, R. N. Gupta, I. D. Spenser, and J. T. Wrobel, Chem. Comm., 1970, 396.

⁷ M. Castillo, R. N. Gupta, D. B. MacLean, and I. D. Spenser, Canad. J. Chem., 1970, 48, 1893; Y. K. Ho, R. N. Gupta, D. B. MacLean, and I. D. Spenser, ibid., 1971, 49, 3352.

⁹ M. Castillo, R. N. Gupta, Y. K. Ho, D. B. MacLean, and I. D. Spenser, *Canad. J. Chem.*, 1970, 48, 2911.
⁹ R. B. Herbert in 'The Alkaloids,' ed. J. E. Saxton, Specialist Periodical Reports, The Chemical Society, London, 1975, Vol. 5, p. 10.
¹⁰ E. Lecte in 'Biosynthesis,' ed. J. D. Bu'lock, Specialist Periodical Reports, The Chemical Society, London, 1976, Vol. 4, p. 97, and personal communication.

fragment. Administration to Securinega plants of a sample of $[RS-6-^{3}H;6-^{14}C]$ -DL-lysine $(^{3}H:^{14}C = 8\cdot 1 \pm 0\cdot 1)$, prepared by mixing [RS-6-³H]-DL-lysine, 0.8 mCi, 21 Ci mmol⁻¹ and [6-14C]-DL-lysine, 0.1 mCi, 48 mCi mmol⁻¹, both Commissariat á l'Ènergie Atomique, France) yielded securinine (${}^{3}H:{}^{14}C = 8 \cdot 0 \pm 0 \cdot 5$) which had retained all tritium, relative to 14C. This result indicates that the nitrogen atom of securinine is derived from the ϵ -amino nitrogen of lysine. Derivation of the securinine nitrogen from any other source would require loss of the ϵ -nitrogen of lysine along the route of biosynthesis of the alkaloid. Loss of the ϵ -nitrogen of lysine, in turn, must be accompanied by labilization and loss of at least part of the tritium, relative to ¹⁴C, from [RS-6-³H]lysine.

The present results, together with the data presented earlier¹⁻³ are consistent with the route to securinine shown in Scheme 2.

We thank the National Research Council of Canada for support.

(Received, 31st December 1975; Com. 1444.)