Dihydropentalenes from the Palladium(iI)-induced Cyclotetramerisation of Acetylenes; X-Ray Crystal Structures of Two Dihydropentalenes

By Pamela M. Bailey, Brian E. Mann, I. David Brown, \dagger and Peter M. Maitlis*
(Department of Chemistry, The University, Sheffield S3 7HF, and \dagger Department of Physics, McMaster University, Hamilton, Ontario, Canada)

Summary Phenyl- or p-chlorophenyl-acetylene reacts with $\quad\left[\mathrm{PdL}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{C}=\mathrm{CHCH}=\mathrm{CBu}{ }^{\mathrm{t}} \mathrm{Cl}\right) \mathrm{Cl}\right] \quad(\mathrm{L}=2,5$-dithiahexane) to give the dihydropentalenes ($\mathrm{II} a, \mathrm{R}^{1}=\mathrm{Ph}$) and (IIb, $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p$), which are isostructural with the orange tetramer $\left(\mathrm{Ph}_{4} \mathrm{C}_{8} \mathrm{H}_{4}\right)$ obtained from the reaction of phenylacetylene with PdCl_{2}; the structures of (IIb) and of the purple tetramer $\left(\mathrm{Ph}_{4} \mathrm{C}_{8} \mathrm{H}_{4}\right)$ also obtained from the latter reaction have been elucidated by X-ray crystallography.

We recently reported the synthesis and the structure of complex (I) which is a derivative of an intermediate, containing a σ-butadienyl ligand, in the PdCl_{2}-induced cyclotrimerisation of t-butylacetylene. ${ }^{1}$ The complex (I) also reacts with 1 equiv. of t-butylacetylene to give $1,3,5$-tri-t-butyl-benzene.

(III)
(IV)

When complex (I) was treated $\left(\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, 2.5 \mathrm{~h}\right)$ with either phenylacetylene or p-chlorophenylacetylene two molecules of the acetylene were incorporated into the orange products isolated, $\left(\mathrm{Bu}_{2}{ }_{2} \mathrm{Ph}_{2} \mathrm{C}_{8} \mathrm{H}_{4}\right)$ (IIa) (m.p. $94-95^{\circ} \mathrm{C}$, 20%) and $\left[\mathrm{But}_{2}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{C}_{8} \mathrm{H}_{4}\right.$] (IIb) (m.p. $149-150{ }^{\circ} \mathrm{C}$, 30%) respectively. Spectroscopic data indicated the compounds to be isostructural.

An X-ray structure determination of a crystal of (IIb) showed it to be the dihydropentalene, 2,7-di-t-butyl-4,5-di-p-chlorophenylbicyclo[3.3.0]octa-1,3,7-triene (Figure 1). Crystal data: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2}, M 437 \cdot 46$, monoclinic, $a=16 \cdot 33(1)$, $b=17.67(1), \quad c=18.46(1) \AA, \quad \beta=113.3(1)^{\circ}, \quad U=4892$, $D_{\mathrm{c}}=1 \cdot 188, Z=8$, space group $B 2_{1} / c$. Three dimensional X-ray data were collected with the crystal mounted along
the a axis, using Mo $-K_{\alpha}$ radiation (graphite monochromator) and a Stoe STADI 2 diffractometer. 2267 Independent reflections were collected with $I_{\text {obs }} \geqslant 3 \sigma\left(I_{\text {obs }}\right)$; the structure was solved using a symbolic addition procedure. Block diagonal least-squares refinement has reduced R to 0.050 , allowing anisotropic thermal motion for the carbon and chlorine atoms.

Figure 1. The structure of (IIb); bond lengths (in A, e.s.d.'s in parentheses): $C(1)-C(2), 1 \cdot 352(6) ; C(1)-C(5), 1 \cdot 523(5) ; C(1)-$ $\mathrm{C}(8), 1 \cdot 448(6)$; $\mathrm{C}(2)-\mathrm{C}(3), 1 \cdot 465(6) ; \mathrm{C}(3)-\mathrm{C}(4), 1 \cdot 356(6) ; \mathrm{C}(4)-$ $\mathrm{C}(5), 1.522(5) ; \mathrm{C}(5)-\mathrm{C}(6), 1.558(5) ; \mathrm{C}(6)-\mathrm{C}(7), 1 \cdot 522(5)$; and $C(7)-C(8), 1 \cdot 348(6)$.

This result is of particular interest since two related organic tetramers (III) and (IV), together with as yet uncharacterised organopalladium compounds, are obtained directly from the PdCl_{2}-induced oligomerisation of phenylacetylene ($\mathrm{PdCl}_{2}, \mathrm{HCl}$, tetrahydrofuran $\left.-\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) . \ddagger$ Spectroscopic studies, in particular the ${ }^{1} \mathrm{H}$ n.m.r. spectrum (Table), indicated that the orange-red tetramer (III) (m.p. $209^{\circ} \mathrm{C}$) was isostructural with (IIa) and (IIb).

The structure of the red-purple tetramer (IV), m.p. $176{ }^{\circ} \mathrm{C}$, was after considerable difficulty finally elucidated from X-ray diffraction measurements and was shown to be the dihydropentalene, 2,4,6,8-tetraphenylbicyclo[3.3.0]octa-1,3,5triene (Figure 2). Crystal data: $\mathrm{C}_{32} \mathrm{H}_{24}, M 408 \cdot 55$, monoclinic, $a=17.54, b=5.760, c=22.54 \AA, \beta=90.8^{\circ}, U=$ $2276, D_{\mathrm{c}}=1 \cdot 192, Z=4$, space group Ic. Three-dimen-

[^0]Table. ${ }^{1} \mathrm{H}$ N.m.r. spectra in $\mathrm{CDCl}_{\mathbf{3}}(\delta)$, couplings in parentheses (in Hz).

Compound					
(IIa)	$\begin{aligned} & 2 \cdot 45(\mathrm{dd}, 1 \mathrm{H}) \\ & (2 \cdot 5,15) \end{aligned}$	$\begin{aligned} & 3 \cdot 38(\mathrm{~d}, 1 \mathrm{H}) \\ & (15) \end{aligned}$	$\begin{aligned} & 6 \cdot 10(\mathrm{~d}, 1 \mathrm{H}) \\ & (2 \cdot 5) \end{aligned}$	6.99(s, 1H)	Others $1 \cdot 17(\mathrm{~s}, 9 \mathrm{H})^{\mathrm{d}}$ $1 \cdot 28(\mathrm{~s}, 9 \mathrm{H})^{\text {d }}$ $7 \cdot 2(\mathrm{~m}, 10 \mathrm{H})^{\mathrm{e}}$
(IIb)	$2 \cdot 42(\mathrm{dd}, 1 \mathrm{H})$	$3 \cdot 31(\mathrm{~d}, 1 \mathrm{H})$	$6 \cdot 12(\mathrm{~d}, 1 \mathrm{H})$	$6 \cdot 98(\mathrm{~s}, 1 \mathrm{H})$	$7 \cdot 18(\mathrm{~s}, 8 \mathrm{H})^{\text {e }}$
	$(2 \cdot 5,15)$	(15)	(2.5)		
(III)	2.94 (dd, 1H)	$3.97(\mathrm{~d}, 1 \mathrm{H})$	$7 \cdot 05^{\text {a }}$ (d, 1 H$)$	b	$7 \cdot 3(\mathrm{~m}, 21 \mathrm{H})^{\text {e }}$
	$(2 \cdot 5,14 \cdot 5)$	(14.5)	(2.5)		
(IV)	3.38(dd, 1H)	$4 \cdot 07(\mathrm{dd}, 1 \mathrm{H})$	$4 \cdot 45(\mathrm{dd}, 1 \mathrm{H}) \mathrm{c}$	b	7.2(m, 21 H$)^{\text {e }}$
	$(1 \cdot 5,19)$	$(6.5,19)$	$(1 \cdot 5,6 \cdot 5)$		

a Detected using INDOR. b Obscured by aromatic resonances. e Assigned to benzylic $-\mathrm{CH}<$. d-Butyl resonance. e Aromatic resonances.
sional X-ray data were collected using a Syntex $P \mathbf{l}$ diffractometer with Mo- K_{α} radiation. 481 Independent reflections were collected with $I_{\text {obs }} \geqslant 2 \sigma\left(I_{\text {obs }}\right)$; the structure

Figure 2. The structure of (IV); bond lengths (in \AA, e.s.d.'s in parentheses) : $\mathrm{C}(1)-\mathrm{C}(2), 1 \cdot 35(4) ; \mathrm{C}(1)-\mathrm{C}(5), 1 \cdot 44(4) ; \mathrm{C}(1)-\mathrm{C}(8)$, $1 \cdot 71(4) ; \mathrm{C}(2)-\mathrm{C}(3), 1 \cdot 55(4) ; \mathrm{C}(3)-\mathrm{C}(4), 1 \cdot 42(3) ; \mathrm{C}(4)-\mathrm{C}(5), 1 \cdot 54(4)$; $C(5)-C(6), 1 \cdot 39(4) ; C(6)-C(7), 1 \cdot 58(3)$; and $C(7)-C(8), 1 \cdot 50(4)$.
was solved using the tangent formula with multiple starting points. ${ }^{2}$ Block diagonal least-squares refinement, with the phenyls treated as groups, has reduced R to 0.097 .

These structures for the dihydropentalenes (II), (III), and (IV) fit in well with our picture of the di- and tri-merisation reactions of acetylenes induced by $\mathrm{PdCl}_{2}{ }^{3}$ and also allow us to extend our concepts in a consistent manner to the formation of tetramers (Scheme). All four tetramers can be built up from a 1,4-disubstituted-butadienylpalladium (A), ${ }^{1}$ which then undergoes cis-insertion of a further acety-
lene followed by cyclisation of the resultant $1,3,6$-tri-substituted-hexatrienylpalladium (B) to the cyclopentadienylmethylpalladium (C). This intermediate (C) can then cis-insert a further acetylene to give a new σ-alkenylpalladium species (D) which can cyclise in two ways, giving either (E) ($\mathrm{R}^{1}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-p, \mathrm{R}^{2}=\mathrm{Bu}^{\mathrm{t}}$), or (E) and (F) (for $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$). Clearly the manner in which this last cyclisation occurs will depend on the sizes of the cyclopentadienyl substituents R^{1} and R^{2}. Loss of $\mathrm{Pd}-\mathrm{Cl}$ accompanied by migration of H then leads to the observed products.

We thank the University of Sheffield for the award of a Junior Research Fellowship (to P.M.B.), the S.R.C. for support, I.C.I. Ltd. for a grant towards the purchase of chemicals, and Drs. I. Singh and K. K. Wu for X-ray intensity measurements on isomer (IV).
(Received, 26th January 1976; Com. 081.)

[^1]
[^0]: \ddagger These compounds were first isolated by one of us (P.M.M.) in 1962 in the laboratories of Professor F. G. A. Stone at Harvard.

[^1]: ${ }^{1}$ B. E. Mann, P. M. Bailey, and P. M. Maitlis, J. Amer. Chem. Soc., 1975, 97, 1275.
 ${ }^{2}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.
 ${ }^{2}$ P. M. Maitlis, Accounts Chem. Res., in the press; see also P. M. Maitlis, 'The Organic Chemistry of Palladium,' vol. II, Academic Press, New York, 1971, pp. 47-58 and P. M. Maitlis, Pure Appl. Chem., 1973, 33, 489.

