Dihydropentalenes from the Palladium(II)-induced Cyclotetramerisation of Acetylenes; X-Ray Crystal Structures of Two Dihydropentalenes

By PAMELA M. BAILEY, BRIAN E. MANN, I. DAVID BROWN, † and PETER M. MAITLIS*

(Department of Chemistry, The University, Sheffield S3 7HF, and †Department of Physics, McMaster

University, Hamilton, Ontario, Canada)

Summary Phenyl- or *p*-chlorophenyl-acetylene reacts with [PdL(Bu^tC=CHCH=CBu^tCl)Cl] (L = 2,5-dithiahexane) to give the dihydropentalenes (IIa, $\mathbb{R}^1 = \mathbb{Ph}$) and (IIb, $\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_4\mathbb{C}_1-p$), which are isostructural with the orange tetramer (Ph₄ $\mathbb{C}_8\mathbb{H}_4$) obtained from the reaction of phenylacetylene with PdCl₂; the structures of (IIb) and of the purple tetramer (Ph₄ $\mathbb{C}_8\mathbb{H}_4$) also obtained from the latter reaction have been elucidated by X-ray crystallography.

We recently reported the synthesis and the structure of complex (I) which is a derivative of an intermediate, containing a σ -butadienyl ligand, in the PdCl₂-induced cyclo-trimerisation of t-butylacetylene.¹ The complex (I) also reacts with 1 equiv. of t-butylacetylene to give 1,3,5-tri-t-butyl-benzene.

When complex (I) was treated $(C_6H_6, 80 \text{ °C}, 2.5 \text{ h})$ with either phenylacetylene or *p*-chlorophenylacetylene two molecules of the acetylene were incorporated into the orange products isolated, $(But_2Ph_2C_8H_4)$ (IIa) (m.p. 94—95 °C, 20%) and $[But_2(p\text{-ClC}_6H_4)_2C_8H_4]$ (IIb) (m.p. 149—150 °C, 30%) respectively. Spectroscopic data indicated the compounds to be isostructural.

An X-ray structure determination of a crystal of (IIb) showed it to be the dihydropentalene, 2,7-di-t-butyl-4,5-di*p*-chlorophenylbicyclo[3.3.0]octa-1,3,7-triene (Figure 1). Crystal data: $C_{28}H_{30}Cl_2$, M 437.46, monoclinic, a = 16.33(1), b = 17.67(1), c = 18.46(1) Å, $\beta = 113.3(1)^\circ$, U = 4892, $D_e = 1.188$, Z = 8, space group $B2_1/c$. Three dimensional X-ray data were collected with the crystal mounted along the *a* axis, using Mo- K_{α} radiation (graphite monochromator) and a Stoe STADI 2 diffractometer. 2267 Independent reflections were collected with $I_{obs} \geq 3\sigma(I_{obs})$; the structure was solved using a symbolic addition procedure. Block diagonal least-squares refinement has reduced *R* to 0.050, allowing anisotropic thermal motion for the carbon and chlorine atoms.

FIGURE 1. The structure of (IIb); bond lengths (in Å, e.s.d.'s in parentheses): C(1)-C(2), 1.352(6); C(1)-C(5), 1.523(5); C(1)-C(8), 1.448(6); C(2)-C(3), 1.465(6); C(3)-C(4), 1.356(6); C(4)-C(5), 1.522(5); C(5)-C(6), 1.558(5); C(6)-C(7), 1.522(5); and C(7)-C(8), 1.348(6).

This result is of particular interest since two related organic tetramers (III) and (IV), together with as yet uncharacterised organopalladium compounds, are obtained directly from the PdCl₂-induced oligomerisation of phenylacetylene (PdCl₂,HCl, tetrahydrofuran-H₂O, 20 °C).[‡] Spectroscopic studies, in particular the ¹H n.m.r. spectrum (Table), indicated that the orange-red tetramer (III) (m.p. 209 °C) was isostructural with (IIa) and (IIb).

The structure of the red-purple tetramer (IV), m.p. 176 °C, was after considerable difficulty finally elucidated from X-ray diffraction measurements and was shown to be the dihydropentalene, 2,4,6,8-tetraphenylbicyclo[3.3.0]octa-1,3,5triene (Figure 2). Crystal data: $C_{32}H_{24}$, M 408.55, monoclinic, a = 17.54, b = 5.760, c = 22.54 Å, $\beta = 90.8^{\circ}$, U =2276, $D_c = 1.192$, Z = 4, space group *Ic*. Three-dimen-

These compounds were first isolated by one of us (P.M.M.) in 1962 in the laboratories of Professor F. G. A. Stone at Harvard.

TABLE	¹ H N.m.r.	spectra	in CDCl.	(δ).	couplings in	parentheses	(in I	Hz).
TUDDD.	· · · · · · · · · · · · · · ·	Spectru .		10/1		0000 011 011 00000	1	,

Compound	CI	H ₂	-CH	Others	
(IIa)	2.45(dd, 1H) (2.5, 15)	3·38(d,1H) (15)	6.10(d, 1H) (2.5)	6·99(s,1H)	1.17(s,9H) ^d 1.28(s,9H) ^d 7.2(m, 10H) ^e
(IIb)	2.42(dd, 1H)	3.31(d,1H)	6.12(d, 1H)	6·98(s,1H)	7·18(s,8H)*
(III)	(2.5, 13) 2.94(dd, 1H) (2.5, 14.5)	(13) 3.97(d,1H) (14.5)	(2.5) 7.05 ^a (d,1H) (2.5)	b	7·3(m,21H)e
(IV)	(2.6, 11.6) 3.38(dd, 1H) (1.5, 19)	4·07(dd,1H) (6·5, 19)	4·45(dd,1H)° (1·5, 6·5)	b	7·2(m,21H)e

resonances.

sional X-ray data were collected using a Syntex P1 diffractometer with Mo- K_{α} radiation. 481 Independent reflections were collected with $I_{obs} \ge 2\sigma(I_{obs})$; the structure

FIGURE 2. The structure of (IV); bond lengths (in Å, e.s.d. 's in $\begin{array}{l} parentheses): \ C(1)-C(2), \ 1\cdot35(4); \ C(1)-C(5), \ 1\cdot44(4); \ C(1)-C(8), \\ 1\cdot71(4); \ C(2)-C(3), \ 1\cdot55(4); \ C(3)-C(4), \ 1\cdot42(3); \ C(4)-C(5), \ 1\cdot54(4); \\ \end{array}$ C(5)-C(6), $1\cdot 39(4)$; C(6)-C(7), $1\cdot 58(3)$; and C(7)-C(8), $1\cdot 50(4)$.

was solved using the tangent formula with multiple starting points.² Block diagonal least-squares refinement, with the phenyls treated as groups, has reduced R to 0.097.

These structures for the dihydropentalenes (II), (III), and (IV) fit in well with our picture of the di- and tri-merisation reactions of acetylenes induced by PdCl₂³ and also allow us to extend our concepts in a consistent manner to the formation of tetramers (Scheme). All four tetramers can be built up from a 1,4-disubstituted-butadienylpalladium (A),¹ which then undergoes *cis*-insertion of a further acety-

^a Detected using INDOR. ^b Obscured by aromatic resonances. ^c Assigned to benzylic -CH <. ^d t-Butyl resonance. ^e Aromatic

lene followed by cyclisation of the resultant 1,3,6-trisubstituted-hexatrienylpalladium (B) to the cyclopentadienylmethylpalladium (C). This intermediate (C) can then *cis*-insert a further acetylene to give a new σ -alkenylpalladium species (D) which can cyclise in two ways, giving either (E) ($R^1 = Ph$ or $C_a H_a Cl-p$, $R^2 = Bu^t$), or (E) and (F) (for $R^1 = R^2 = Ph$). Clearly the manner in which this last cyclisation occurs will depend on the sizes of the cyclopentadienyl substituents R¹ and R². Loss of Pd-Cl accompanied by migration of H then leads to the observed products.

SCHEME. $R^1 = Ph$ or C_6H_4Cl-p , $R^2 = Bu^t$ or Ph.

We thank the University of Sheffield for the award of a Junior Research Fellowship (to P.M.B.), the S.R.C. for support, I.C.I. Ltd. for a grant towards the purchase of chemicals, and Drs. I. Singh and K. K. Wu for X-ray intensity measurements on isomer (IV).

(Received, 26th January 1976; Com. 081.)

¹ B. E. Mann, P. M. Bailey, and P. M. Maitlis, J. Amer. Chem. Soc., 1975, 97, 1275.

- ² G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1971, A27, 368.
 ⁸ P. M. Maitlis, Accounts Chem. Res., in the press; see also P. M. Maitlis, 'The Organic Chemistry of Palladium,' vol. II, Academic Press, New York, 1971, pp. 47-58 and P. M. Maitlis, Pure Appl. Chem., 1973, 33, 489.