Novel Terdentate Hydrated β-Diketone Complexes of Triarylantimony(v)

By Fujio Ebina, Takashi Uehiro, Toschitake Iwamoto, Akira Ouchi,* and Yukichi Yoshino (Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan)

Summary Novel complexes of fluorinated β-diketone hydrate with triarylantimony(v), $\mathrm{Ar}_{3} \mathrm{Sb}_{\left[\mathrm{CF}_{3} \mathrm{C}(\mathrm{O})_{2} \mathrm{CH}_{2}-1 .\right.}$ COR] ($\mathrm{Ar}=\mathrm{Ph}$ or $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$, and $\mathrm{R}=\mathrm{Me}$ or Ph), have been synthesized, in which the ligand acts as a terdentate ligand co-ordinated to the central antimony atom by a pair of gem-diol oxygen atoms as well as the carbonyl oxygen.

We have found that triarylantimony(v) forms complexes with 1,1,1-trifluoropentane-2,4-dione (Htfac), and 4,4,4-trifluoro-1-phenylbutane-1,3-dione (Htfbz), in which a pair of diolato oxygen atoms and a carbonyl oxygen are coordinated to the central antimony atom. The complexes are formulated as $\mathrm{Ar}_{3} \mathrm{Sb}\left[\mathrm{CF}_{3} \mathrm{C}(\mathrm{O})_{2} \mathrm{CH}_{2} \mathrm{COR}\right]$, where $\mathrm{Ar}=\mathrm{Ph}$ or $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$, and $\mathrm{R}=\mathrm{Me}$ or Ph .

When dibromotriphenylantimony(v), ${ }^{1}$ a β-diketone, and triethylamine (deprotonation reagent) were mixed in dried benzene the oxygen-bridged enol-type β-diketone complex, $\left[\mathrm{Ar}_{3} \mathrm{SbL}_{2} \mathrm{O}\right.$ (where $\mathrm{Ar}=\mathrm{Ph}$ or $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$, and $\mathrm{HL}=\beta$ diketone) was obtained by a metathetical reaction. ${ }^{2}$ When complexes of this type using fluorinated β-diketones were boiled for several hours or allowed to stand for a few days at room temperature in a moist organic solvent, e.g. acetonitrile, the title complexes were obtained. They were recrystallized from a mixture of dried dichloroethane and light petroleum, or dried acetonitrile. Although enol-type complexes of pentane-2,4-dione, and 1-phenylbutane-1,3dione were obtained, complexes of this new type have not been isolated yet.

An X-ray crystal and molecular analysis of the $\operatorname{tris}(p$ chlorophenyl)antimony(v) complex of hydrated Htfac, $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{Sb}\left[\mathrm{CF}_{3} \mathrm{C}(\mathrm{O})_{2} \mathrm{CH}_{2} \mathrm{COMe}\right]$, was carried out. The crystals are monoclinic, space group $P 2_{1} / c, a=11.518(1)$, $b=20.962(2), \quad c=12.259(1) \AA ; \quad \beta=124.081(7)^{\circ} ; \quad U=$
$2451.57 \AA^{3} ; D_{\mathrm{c}}=1.70, D_{\mathrm{m}}=1.68 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4$. Intensity data were collected by the $\omega-2 \theta$ scan method $\left(2 \theta<50^{\circ}\right)$ on a Rigaku automated four circle diffractometer using $\mathrm{Mo}-K_{\alpha}$ radiation ($0 \cdot 71069 \AA$). The crystal was

Figure. Molecular structure of $\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{Sb}\left[\mathrm{CF}_{3} \mathrm{C}(\mathrm{O})_{2} \mathrm{CH}_{2}-\right.$ COMe]. Bond lengths (\AA) : mean $\mathrm{Sb}-\mathrm{C}(1,2,3) 2 \cdot 12(1)$; mean $\mathrm{Sb}-\mathrm{O}(2,3) 2 \cdot 03(1) ; \mathrm{Sb}-\mathrm{O}(1) 2 \cdot 52(1)$; mean $\mathrm{C}(5)-\mathrm{O}(2,3) \quad 1 \cdot 45(2)$; $\mathrm{C}(7)-\mathrm{O}(1) \quad 1 \cdot 23(2)$; bond angles $\left({ }^{\circ}\right): \mathrm{C}(1)-\mathrm{Sb}-\mathrm{C}(2) 100 \cdot 3(4)$; $\mathrm{C}(1)-\mathrm{Sb}-\mathrm{C}(3) \quad 103.9(5) ; \quad \mathrm{C}(1)-\mathrm{Sb}-\mathrm{O}(2) \quad 97 \cdot 4(5) ; \mathrm{C}(1)-\mathrm{Sb}-\mathrm{O}(3)$ $102.9(4) ; \mathrm{C}(2)-\mathrm{Sb}-\mathrm{O}(1) 80.9(3) ; \mathrm{C}(2)-\mathrm{Sb}-\mathrm{O}(2) 93 \cdot 0(5) ; \mathrm{C}(3)-\mathrm{Sb}-$ $\mathrm{O}(1) 81 \cdot 7(4) ; \mathrm{C}(3)-\mathrm{Sb}-\mathrm{O}(3) 88 \cdot 7(4)$; mean $\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}(2,3) 71 \cdot 3(3)$; $\mathrm{O}(2)-\mathrm{Sb}-\mathrm{O}(3) 67 \cdot 4(4)$.
stable in air and used uncovered. Of the 4518 independent reflections, 2784 [$I>3 \sigma(I)]$ were used in the calculations. The positions of the antimony atoms were deduced from a

Table. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. spectral data (in p.p.m., ${ }^{1} \mathrm{H}$ ref. $\mathrm{Me}_{4} \mathrm{Si},{ }^{19} \mathrm{~F}$ ref. 1,1,2,2-tetrachloro-3,3,4,4-tetrafluorocyclobutane).

Compounds				Aryl		Ligand				${ }^{19} \mathrm{~F}$ - n.m.r.
				O-	$m-, p$	\bigcirc	$-\mathrm{CH}_{2}-$	Me	Ph	
Htfac . . .						$5 \cdot 90$		$2 \cdot 19$		$45 \cdot 1{ }^{\text {a }}$
$\mathrm{Ph}_{8} \mathrm{Sb}$ (HLO)		.		$7 \cdot 68$	$7 \cdot 46$		3-16	$2 \cdot 22$		37.3 ${ }^{\text {a }}$
$\left[\mathrm{Ph}_{3} \mathrm{SbL}\right]_{2} \mathrm{O}$	\cdots	-	-	$7 \cdot 52$	$7 \cdot 24$	$5 \cdot 36$		1.90		$46 \cdot{ }^{\text {a }}$
$\left(p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{Sb}(\mathrm{HLO})$				$7 \cdot 49{ }^{\text {c }}$	$7.33{ }^{\text {c }}$		$3 \cdot 06$	$2 \cdot 14$		
$\left[\left(p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\right)_{8} \mathrm{SbL}\right]_{2} \mathrm{O}$	\cdots	\cdots	.	$7 \cdot 35{ }^{\text {c }}$	$7 \cdot 03^{\text {c }}$	$5 \cdot 46$		1.97		
Htfbz			-			$6 \cdot 45$		$7 \cdot 87$	$7 \cdot 50$	$44 \cdot 5{ }^{\text {b }}$
$\mathrm{Ph}_{3} \mathrm{Sb}(\mathrm{HLO})$	\cdots	.	.	$7 \cdot 65$	$7 \cdot 36$		$3 \cdot 45$	$7 \cdot 65$	$7 \cdot 36$	$37 \cdot{ }^{\text {b }}$
$\left[\mathrm{Ph}_{3} \mathrm{SbL}\right]_{2} \mathrm{O}$..	.	.	\cdots	$7 \cdot 55$	$7 \cdot 30$	6.01		$7 \cdot 15$	$7 \cdot 05$	$46 \cdot 2^{\text {b }}$

a benzene, ${ }^{\mathrm{b}} \mathrm{CHCl}_{3}$, in all other cases CDCl_{8} solutions were used, c AB pattern, $J 8 \mathrm{~Hz}$.
three dimensional Patterson map, and the remaining nonhydrogen atoms were located in the subsequent Fourier maps. The structure has been refined by block-diagonal least squares to $R=0.067$, The projection of the molecule along the c-axis is shown in the Figure.

The co-ordination around the antimony atom is deformed octahedral with three aryl groups in facial positions. Although the distance between antimony and the carbonyl oxygen atom, $\mathrm{Sb}-\mathrm{O}(1)$, is longer than the usual $\mathrm{Sb}-\mathrm{O}$ single bond, it is still considered to be in the bonding range. The arrangement of two oxygen and two carbon atoms around $\mathrm{C}(5)$ is approximately tetrahedral. The distances between
$C(5)-C(6)$ and $C(6)-C(7)$ of the β-diketone skeleton are typical of $\mathrm{C}-\mathrm{C}$ single bonds.

The ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ n.m.r. spectral data of the complexes prepared and related compounds are shown in the Table. The enol-type complexes have a methine proton, while the title ones have methylene protons. The $v(\mathrm{C}=\mathrm{O})$ band for complexes of the type $\mathrm{Ar}_{3} \mathrm{Sb}(\mathrm{HLO})$ is seen at $1683(\mathrm{Ar}=\mathrm{Ph}$, $\mathrm{L}=\mathrm{tfac}), 1645(\mathrm{Ar}=\mathrm{Ph}, \mathrm{L}=\mathrm{tfb} z)$, and $1682 \mathrm{~cm}^{-1}(\mathrm{Ar}=\mathrm{Cl}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{~L}=\mathrm{tfac}\right)$, while $v(\mathrm{C}=\mathrm{O})$ for the enol-type dimer, $\left[\mathrm{Ar}_{3} \mathrm{SbL}\right]_{2} \mathrm{O}$, is 1637,1610 , and $1634 \mathrm{~cm}^{-1}$, respectively.
(Received, 5th January 1976; Com. 005.)

[^0]
[^0]: ${ }^{1}$ A. Reese, Annalen, 1886, 233, 50; P. Pfeiffer, Ber., 1904, 37, 4620.
 ${ }^{2}$ A. Ouchi, H. Honda, and S. Kitazima, J. Inorg. Nuclear Chem., 1975, 37, 2559. The synthetic technique used is an extension of the one in this reference.

