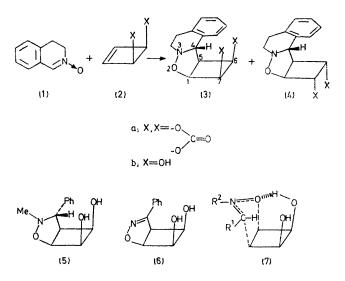
syn-Selectivity in the Reaction of 1,3-Dipoles with cis-Cyclobut-3-ene-1,2-diol


By CARLO DE MICHELI,* ANNA GAMBA INVERNIZZI, REMO GANDOLFI,* and LIVIA SCEVOLA (Istituto di Chimica Organica, via Taramelli 10, 27100 Pavia, Italy)

Summary Cyclic nitrones, C-phenyl-N-methylnitrone, benzonitrile oxide, and 2,4,6-trimethylbenzonitrile oxide react in benzene with *cis*-cyclobut-3-ene-1,2-diol to give as the sole or the dominant products the sterically disfavoured *syn*-adducts.

STERICALLY dis-favoured syn stereoselectivity in 1,3dipolar cycloadditions has been reported only for the reactions of 1,3-dipoles (diazoalkanes,¹ nitrile oxides,² nitrones³) with cis-3,4-dichlorocyclobutene. We now report reactions of cis-cyclobut-3-ene-1,2-diol (**2b**), m.p. 110 °C [prepared by LiAlH₄ reduction (ether, room temperature) of the carbonate (**2a**)⁴] in which the sole or the major adducts formed were the sterically dis-favoured syn adducts.

The 3,4-dihydroisoquinoline N-oxide (1) reacted with (2a) in anhydrous benzene at room temperature to give as dominant product the *anti*-adduct (4a) (75%), m.p. 146—147 °C, with minor amounts of (3a) ($3\cdot5\%$), m.p. 190—191 °C; with (2b) the cycloaddition was highly stereoselective, giving the *syn*-adduct (3b) (92%), m.p. 88—90 °C, as the sole isolated product even though t.l.c. analyses of the crude reaction mixture showed traces of the *anti*-isomer (4b). The adducts (3b) and (4b), m.p. 147—149 °C, can be prepared easily by gentle heating in water of (3a) and (4a) respectively. The adduct (4b) was also prepared in low yield by LiAlH₄ reduction (ether, room temperature) of (4a).

Comparable results were also observed for the reaction of 5,5-dimethyl- Δ^1 -pyrroline N-oxide with (2a) in anhydrous benzene at reflux [syn-adduct (8%), m.p. 122—123 °C, anti-

adduct (65%), m.p. 126—128 °C] and with (2b) at room temperature (87% yield of syn-adduct, m.p. 109—110 °C).

In addition to the conversion of (3a) and (4a) into (3b) and (4b), structural assignments relied upon elemental analyses, and i.r. and ¹H n.m.r. data. The n.m.r. data (Table) for

TABLE

¹H N.m.r. [δ (C₆D₆)] data and (in parentheses) $\Delta \delta = \delta$ (CDCl₃) $-\delta(C_6D_6)^{a,b}$

	1-H	4-H	5-H	$J_{4,5}$	J 5+6
(3b)	4∙08(m)	4·73 br (s)	3·17 (m)	<1.0	$5 \cdot 0$
(4 a)	(0.31)	(0·05)	(0.43)	<0 F	<0 F
(4 a)	3·87(d) (0·65)	3·72br (s) (0·76)	3·02(d) (0·67)	< 0.2	< 0.2

* Other $\Delta\delta$ values: 0.31 for 6- and 7-H in (3b), 0.84 for 6-H and 0.58 for 7-H in (4a). b / in Hz.

adducts (3b) and (4a) are typical for anti- and syn-adducts.³ In particular, the trans relationship of 4- and 5-H in (3b) and (4a), and 5- and 6-H in (4a) is supported by the low coupling constants found.^{3,5} Moreover, the lower aromatic solvent induced shift observed for 4-H of the syn-adduct (3b) compared with that found for (4a), is attributed to the syn-disposition of the groups at positions 6 and 7 which makes solvation of 4-H difficult.

The reaction of C-phenyl-N-methylnitrone and (2b) in benzene at reflux was slow, and gave only the syn-adduct (5) (38%), m.p. 104 °C. The latter adduct was shown (i.r., t.l.c., ¹H n.m.r.) to be different from the other three possible stereoisomers which have been synthesized by a different route.⁶ We assume that compound (5) is formed through an exo addition of the E-isomer of C-phenyl-N-methylnitrone to (2b). The latter isomer, although present in very low concentrations in the equilibrium $E \xrightarrow{\longrightarrow} Z$ would be the most reactive form of the C-phenyl-N-methylnitrone.7

Benzonitrile oxide generated in situ was similarly treated with (2b) in benzene at room temperature; the adduct (6)(65%), m.p. 147-148 °C, was isolated and here too t.l.c. analyses of the crude reaction mixture showed minor amounts of the known anti-isomer.8

Experiments with diazoalkanes (diazomethane, diazoethane, 2-diazopropane and phenyldiazomethane) and (2b) in ether yielded insoluble materials, probably polymeric, which were not studied further.

In our opinion, a rationalization of the clear syn-selectivity observed for the reactions studied involves, besides the possible interactions already invoked in the case of cis-3,4dichlorocyclobutene,^{2,3,9} the formation of a hydrogen bond between the hydroxylic hydrogen of the dipolarophile and the oxygen atom of the 1,3-dipole, e.g. (7).¹⁰

In accordance with this view, 2,4,6-trimethylbenzonitrile oxide adds (2b), yielding a predominance of the syn-adduct, m.p. 117-119 °C (syn: anti ratio 9:1) in benzene solution, and comparable amounts of the syn and anti, m.p. 154 °C, adducts in methanol solution.[†]

We thank Professors G. Bianchi and P. Grünanger for discussions and the Consiglio Nazionale delle Ricerche (Rome) for financial support.

(Received, 23rd December 1975; Com. 1421.)

Structures of these adducts have been assigned by comparison of their ¹H n.m.r. spectra with those of the adducts from benzonitrile oxide.

- ¹ M. Franck-Neumann, Angew. Chem. Internat. Edn., 1969, 8, 210.
- ²G. Bianchi, C. D. Micheli, A. Gamba, and R. Gandolfi, J.C.S. Perkin I, 1974, 137.
- ^{*}C. De Micheli, A. Gamba, and R. Gandolfi, Tetrahedron Letters, 1975, 2493.
- ⁴ J. Tancrede and M. Rosenblum, Synthesis, 1971, 219.
- ⁸ R. Mondelli and A. Gamba, Org. Magnetic Resonance, 1973, 5, 101.
- ⁶C. De Micheli and R. Gandolfi to be published. ⁷L. W. Boyle, M. J. Peagram, and G. H. Whitham, J. Chem. Soc. (B), 1971, 1728.
- ⁸G. Bianchi, R. Gandolfi, and P. Grünanger, Tetrahedron, 1970, 26, 5113.
- ⁹ M. Franck-Neumann and M. Sedrati, Angew. Chem. Internat. Edn., 1974, 13, 606.

¹⁰ A hydrogen bond between the OH group and the dipole oxygen atom has been invoked also in the reaction of benzonitrile oxide with cyclopent-2-en-1-ol (P. Caramella, and G. Cellerino, Tetrahedron Letters, 1974, 229).