Dimerisation of Ethyl \boldsymbol{N} - $\boldsymbol{\alpha}$-Methylbenzyliminoacetate with Nonacarbonyldi-iron. Crystal and Molecular Structures of a Di-iron Carbonyl Intermediate and of the Dimerized Imine Di-iron Carbonyl Complex

By André De Cian and Raymond Weiss*
(Institut de Chimie, Université Louis Pasteur, B.P. 296/R8 67008 Strasbourg, France)
and Yves Chauvin,* Dominigue Commereuc, and Didier Hugo
(Institut Français du Pétrole, 92502, Rueil-Malmaison, France)

Abstract

Summary Ethyl N - α-methylbenzyliminoacetate, L, dimerizes with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$, affording μ-[diethyl 2,3-bis(α-methylbenzylamino)succinate]-hexacarbonyldi-iron- $(F e-F e), \quad\left[\mathrm{Fe}_{2}(\mathrm{CO})_{8}(\mathrm{~L}-\mathrm{L})\right]$; the X-ray crystal structures of this complex and of an intermediate complex $\left[\mathrm{Fe}_{2}-\right.$ $\left.(\mathrm{CO})_{6} \mathrm{~L}\right]$ have been determined, the latter showing novel bridging of an $-\mathrm{HC}=\mathrm{N}-$ group.

The N - α-methylbenzyliminoacetate $\mathrm{PhCH}(\mathrm{Me}) \mathrm{N}=\mathrm{CHCO}_{2}{ }^{-}$ $E t(L)$ is a valuable intermediate for the asymmetric synthesis of α-amino-acids. ${ }^{1,2}$ We investigated in greater detail the reaction of (L) with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ and unexpectedly found that the imine ligand undergoes dimerisation. When a solution of (L) $(2.7 \mathrm{mmol})$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right](2 \cdot 6 \mathrm{mmol})$ in benzene (5 ml) was stirred overnight and then evaporated, several complexes were isolated by t.l.c. (silica gel, benzene as eluent). Subsequent crystallisation from pentane or benzene-pentane afforded two complexes with analytical data in accordance with the formulations $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~L}\right](\mathbf{1})$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6} \mathrm{~L}_{2}\right]$ (2).

Figure 1. Complex (1): $\mathrm{Fe}(\mathbf{1})-\mathrm{Fe}(\mathbf{2}), \mathbf{2} \cdot \mathbf{5 5 1}(\mathbf{1}) ; \mathrm{Fe}(\mathbf{1})-\mathrm{N}, 1.927-$ (5) ; $\mathrm{Fe}(1)-\mathrm{C}(5), 2 \cdot 055(6) ; \mathrm{Fe}(2)-\mathrm{O}(4), 2 \cdot 0 \mathrm{Il}(4) ; \mathrm{Fe}(2)-\mathrm{N}, 1 \cdot 960(4)$; $\mathrm{N}-\mathrm{C}(6), \quad 1 \cdot 481(8) ; \quad \mathrm{N}-\mathrm{C}(5), \quad 1 \cdot 417(7) ; \mathrm{C}(5)-\mathrm{C}(4), \quad 1 \cdot 435(10)$; $\mathrm{C}(4)-\mathrm{O}(4), 1 \cdot 258(7) ; \mathrm{C}(4)-\mathrm{O}(5), 1 \cdot 326(8) \AA$.
Single crystal X-ray diffraction studies established the molecular geometries in Figures 1 and 2 for complexes (1) and (2) respectively. Crystal data: Complex (1), $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Fe}_{2}$ $\mathrm{NO}_{8}, M=485$, monoclinic, space group $P 2_{1} / c, a=8 \cdot 164(5)$, $b=10.986(6), \quad c=23.780(8) \AA, \quad \beta=101.78(10)^{\circ}, \quad U=$ $2085.9 \AA^{3}, \quad D_{\mathrm{m}}=1.52, \quad D_{\mathrm{c}}=1.54 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4$. The structure was solved with 2105 non-zero independent
reflections recorded on a Picker FACS I diffractometer using Mo- K_{α} radiation; current $R=0.049$. Complex (2), $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{10}, \quad M=690$, orthorhombic, space group $P c c a, a=30.699(8), b=14.731(4), c=13.768(4) \AA, U=$ $6226 \AA^{3}, D_{\mathrm{m}}=1.45, D_{\mathrm{c}}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}, Z=8$. The intensities of 1100 non-zero independent reflections were recorded on a Philips PWl100 diffractometer using $\mathrm{Cu}-K_{\alpha}$ radiation; current $R=0.083$.

Figure 2. Complex (2): $\mathrm{Fe}(1)-\mathrm{Fe}(2), \mathbf{2} \cdot \mathbf{3 5 4 (5) ; ~} \mathrm{Fe}(\mathbf{1})-\mathrm{N}(\mathbf{1})$, $1.99(2) ; \mathrm{Fe}(1)-\mathrm{N}(2), 2.05(2) ; \mathrm{Fe}(2)-\mathrm{N}(1), 2.02(2) ; \mathrm{Fe}(2)-\mathrm{N}(2)$, $1.99(2) ; \quad \mathrm{N}(1)-\mathrm{C}(6), \quad 1.49(3) ; \quad \mathrm{N}(1)-\mathrm{C}(4), \quad 1 \cdot 48(3) ; \quad \mathrm{C}(4)-\mathrm{C}(5)$. $1 \cdot 55(3) ; \mathrm{N}(2)-\mathrm{C}(5), 1 \cdot 49(3) ; \mathrm{N}(2)-\mathrm{C}(7), 1 \cdot 54(3) \AA$.

In (1), the metal atoms are not equivalent. One $\mathrm{Fe}(\mathrm{CO})_{3}$ group is π-bonded to L through $\mathrm{Fe}(1)$ and the $-\mathrm{N}=\mathrm{CH}-$ double bond whereas the other is σ-bonded through $\mathrm{Fe}(2)$ and two donor atoms of L, the nitrogen atom already involved in a π bond with $\mathrm{Fe}(1)$ and the ligand carbonyl oxygen atom $\mathrm{O}(4)$. The $-\mathrm{N}=\mathrm{CH}$ - group thus acts as an unsymmetrical bridging group interacting with $\mathrm{Fe}(1)$ by a π bond and with $\mathrm{Fe}(2)$ by a σ bond. An analogous bridging mode has recently been found for a carbonyl group in $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{5}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{3}$ The iron-iron distance $[2.551(1) \AA]$ and electron counting indicate the presence of a formal $\mathrm{Fe}(2) \rightarrow \mathrm{Fe}(1)$ donor bond. The $\mathrm{O}(4), \mathrm{C}(4), \mathrm{C}(5)$, and $O(5)$ atoms are approximately coplanar, with nitrogen $0.17 \AA$ out of this plane. The $\mathrm{Fe}(2)$ atom is also removed from this plane by $0.30 \AA$ but on the opposite side to nitrogen.

Dimerisation occurred between two molecules of L in (2) affording a 2,3-diaminosuccinic acid derivative to which are linked two iron carbonyl units forming a nitrogenbridged binuclear carbonyl complex. $C(6)$ and $C(7)$ have the same absolute configuration (S, S Figure 2). A third complex giving similar analytical figures to those for (2) is obtained starting from racemic L, and we assume that in this complex $C(6)$ and $C(7)$ have the opposite absolute configuration (R, S).

On heating or irradiation, under CO , a benzene solution of (1) in the presence of an excess of L gave complex (2). Thus complex (1) is probably an intermediate in the dimerisation. In this way, the reactivity of L with iron carbonyls parallels that of ethyl acrylate, ${ }^{4}$ the presence of the

nitrogen atoms being responsible for the co-ordination of a second metal atom.
(Received, 17th December 1975; Com. 1388.)
${ }^{1}$ J. C. Fiaud and H. Kagan, Tetrahedron Letters, 1970, 1813.
${ }_{2}$ J. Y. Chenard, D. Commereuc, and Y. Chauvin, J.C.S. Chem. Comm., 1972, 750.
${ }^{3}$ R. Colton, C. J. Commons, and B. F. Hoskins, J.C.S. Chem. Comm., 1975, 363.
${ }^{4}$ F. W. Grevels, D. Schulz, and E. Koerner von Gustorf, Angew. Chem. Internat. Edn., 1974, 13, 534.

