Products of the Reaction of $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ with Cyclohexa-1,3-diene and Butadiene; \boldsymbol{X}-Ray Structure of the Hexadienyl Complex [$\mathrm{HOs}_{3}(\mathrm{CO}), \mathrm{C}_{6} \mathrm{H}_{7}$]

By Eric G. Bryan, Brian F. G. Johnson, John W. Kelland, and Jack Lewis*
(University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW)
and Mary McPartlin
(Department of Chemistry, The Polytechnic of North London, Holloway Road, London N7 8DB)

Summary $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ reacts with cyclohexa-1,3-diene $\left(\mathrm{C}_{6} \mathrm{H}_{8}\right)$ to give $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9} \mathrm{C}_{6} \mathrm{H}_{7}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{C}_{6} \mathrm{H}_{8}\right]$ and the X-ray structure of $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9} \mathrm{C}_{6} \mathrm{H}_{7}\right]$ is reported; butadiene $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$ reacts to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{C}_{4} \mathrm{H}_{6}\right]$.

Recently, structural and synthetic studies have shown the reactions of the triangulo-clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{H}_{2} \mathrm{Os}_{3}\right.$ $\left.(\mathrm{CO})_{10}\right]^{1}(1)$ with simple alkenes and alkynes to be varied and interesting. Especially noteworthy is the variety of bonding modes these organometallic units adopt on combination with the triosmium unit which offer new models
for the interaction of small organic molecules with metal surfaces. X-Ray studies, and spectroscopic and chemical evidence indicate that to date, attack on the Os_{3} unit occurs with cleavage of $\mathrm{C}-\mathrm{H}$ bonds and that oxidative-addition of $\mathrm{C}-\mathrm{H}$ to three metal atoms occurs. We report here a new reaction of (1) with cyclohexa-1,3-diene in which, depending on the conditions, the major product is either a dienyl complex (2) corresponding to an oxidative-addition reaction, or a di-substituted triosmium carbonyl (3). We also report that on reaction with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$, complex (2) yields a benzene derivative (4) and complex (3) a dienyl derivative
(5). Butadiene reacts with (1) under mild conditions to yield the butadiene analogue of (3).

(1)

(2)

(4)

(5)

A solution of (1) and cyclohexa-1,3-diene in hexane at $25^{\circ} \mathrm{C}$ yielded, after 40 h , a mixture of two products which were readily separated by t.l.c. on silica. The major product was identified as the di-substituted osmium carbonyl derivative $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10} \mathrm{C}_{6} \mathrm{H}_{8}\right.$] (3) on the basis of its spectroscopic properties [i.r. $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 2110 \mathrm{~m}, 2061 \mathrm{~s}, 2031 \mathrm{~s}$, 2021vs, 2007s, $1979 \mathrm{~m}, 1970 \mathrm{w}$, and $1934 \mathrm{w} \mathrm{cm}^{-1} ; m / e 936$ $\left(M^{+}\right), 856\left(M-\mathrm{C}_{6} \mathrm{H}_{8}{ }^{+}\right)$, and peaks corresponding to $\left.M-\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{CO})_{n}{ }^{+}(n=1-10)\right]$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum $\left(35^{\circ} \mathrm{C}, 80 \mathrm{MHz}\right.$, CFT 20 spectrometer, $\mathrm{Me}_{4} \mathrm{Si}$ internal reference) : $\tau 4.50(2 \mathrm{H}, \mathrm{m}), 6.25(2 \mathrm{H}, \mathrm{m})$, and $7.53(4 \mathrm{H}, \mathrm{s})$, is fully consistent with the assigned structure (3) and is similar to the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of cyclohexa-1,3-dienetricarbonyliron. ${ }^{2}$ A low-temperature ${ }^{13} \mathrm{CO}$ limiting spectrum $\left(-80^{\circ} \mathrm{C}\right)$ was obtained which displayed features corresponding to the static structure (3). Thus nine signals of relative intensity 1:1:1:1:1:1:1:1:2 were observed which, allowing for the accidental degeneracy of two single resonances, is compatible with structure (3). Other possible structures would possess higher symmetry and would require fewer than nine signals. The second product was a yellow, air-stable, solid whose spectroscopoic properties [i.r. $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right) 2080 \mathrm{~m}, 2058 \mathrm{~s}, 2034 \mathrm{~s}, 2021 \mathrm{~s}, 1992 \mathrm{~s}, 1960 \mathrm{~m}$, and $1953 \mathrm{~m} \mathrm{~cm}^{-1} ; m / e 908\left(M^{+}\right)$, and peaks corresponding to $\left.M-(\mathrm{CO})_{n}{ }^{+}(n=1-9)\right]$ indicated that it was $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{8}$] (2). In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum at $35^{\circ} \mathrm{C}$ a high-field
resonance (relative intensity 1) was observed at $\tau 29 \cdot 3$; in addition, signals at $\tau 4 \cdot 12(1 \mathrm{H}, \mathrm{t}), 4 \cdot 56(\mathrm{lH}, \mathrm{d}), 5 \cdot 23(2 \mathrm{H}, \mathrm{dd})$, $7.06(2 \mathrm{H}, \mathrm{d})$, and $7.30(1 \mathrm{H}, \mathrm{d})$ may be assigned to a coordinated hexadienyl unit; spin decoupling experiments are consistent with this assignment. A structure corresponding to (2) was therefore indicated. This was confirmed by a single-crystal X-ray structure determination (see below).

Figure. The structure of $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9} \mathrm{C}_{6} \mathrm{H}_{7}\right]$ (2). The e.s.d.s of the bond lengths (\AA) are: Os-Os 0.002 and Os-C $0.03 \AA$. Relevant non-bonding contacts are: Os(2)-C(2), Os(2)-C(4) $2.83 \AA$; $\mathrm{Os}(1)-\mathrm{C}(6), \mathrm{Os}(3)-\mathrm{C}(6) 3 \cdot 22 \AA$.

When the reaction between (1) and cyclohexa-1,3-diene was carried out in refluxing octane it was observed that after 5 min all the $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right]$ had reacted to give (2) and only a small amount of (3). We were able to show that (3) was not an intermediate in the formation of (2) since on heating a pure sample of (3) in refluxing octane for 5 min complex (2) was not obtained, although in refluxing toluene for 5 h complex (2) was obtained in 20% yield. Treatment of (2) with $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to H^{-}abstraction and the formation of an unstable cationic complex (4). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of this complex was simple, exhibiting one singlet resonance in the aromatic region ($\tau 4 \cdot 17$) and one singlet resonance at $\tau \mathbf{2 7 \cdot 2}$. The i.r. spectrum (Nujol; $2177 \mathrm{~m}, 2090 \mathrm{~s}, 2048 \mathrm{br}, \mathrm{vs}, 2028 \mathrm{~s}, 2006 \mathrm{~m}, 1982 \mathrm{~m}$, and 1972 m cm^{-1}) indicates low symmetry and is somewhat similar to that of (2). These data are consistent with more than one structure but, in view of the method of preparation, structure (4) is the more likely.

Butadiene reacts with (1) in hexane at $25^{\circ} \mathrm{C}$, after 12 h , to give the butadiene analogue of (3). The i.r. spectrum of this yellow complex was very similar to that of (3), $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right.$: $2112 \mathrm{~m}, 2062 \mathrm{~s}, 2031 \mathrm{~s}, 2026 \mathrm{~s}, 2023 \mathrm{~s}, 2009 \mathrm{~s}, 1982 \mathrm{~m}, 1943 \mathrm{w}$, $1932 \mathrm{vw} \mathrm{cm}^{-1}$); however, the mass spectrum showed the parent peak, followed by loss of CO , followed by loss of $\mathrm{C}_{4} \mathrm{H}_{6}$. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum at $35^{\circ} \mathrm{C}[\tau 4.63(2 \mathrm{H}, 2$ overlapping t), $7 \cdot 58(2 \mathrm{H}, \mathrm{m})$, and $(2 \mathrm{H}, \mathrm{dd})$ resembles that of butadiene tricarbonyliron ${ }^{3}$ and shows the same variation with temperature as (3).

Single-crystal X-ray analysis has shown that the complex (2) has the structure shown in the Figure; this is consistent with hydrogen bridging between $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$. The crystals of (2), $M=902 \cdot 8$, are monoclinic, space-group
$P 2_{1} ; \quad a=8.477(2), \quad b=12.056(4), \quad c=9.013(3) \AA, \quad \beta=$ $92 \cdot 88(2)^{\circ} ; Z=2$. Full matrix least-squares refinement of the atomic parameters (Os anisotropic) using 2044 independent reflections (Philips PWll00 diffractometer, Mo- K_{α} radiation) has given an R-value of 0.044 . The principal bond lengths are shown in the Figure.

The triangle of osmium atoms is nearly isosceles, with a non-crystallographic plane of symmetry perpendicular to it and through $\mathrm{Os}(2), \mathrm{C}(6)$, and $\mathrm{C}(3)$. In the cyclohexadienyl ligand the five carbon atoms which form the pentadienyl fragment are planar to within $0.01 \AA$, and $C(6)$ is $0.32 \AA$ above this plane. The pentadienyl plane slopes away from the osmium triangle at an angle of $3 \cdot 3^{\circ}$ so that the $\mathrm{Os}(2)-\mathrm{C}(3)$ bond $(2 \cdot 17 \AA)$ is significantly shorter than the other Os-C
bonds ($2 \cdot 28,2 \cdot 45 \AA$) and similar in length to Os-C σ-bonds observed in other cluster compounds. ${ }^{4}$ The angles around $\mathrm{C}(3), \mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)=114(2)^{\circ}, \mathrm{Os}(2)-\mathrm{C}(3)-\mathrm{C}(2)=99(2)^{\circ}$, and $\mathrm{Os}(2)-\mathrm{C}(3)-\mathrm{C}(4)=99(2)^{\circ}$, are also consistent with considerable σ-character in the $\mathrm{Os}(2)-\mathrm{C}(3)$ bond. It seems the bonding requirements of a triangulo-trimetal cluster favour more hexa-1,4-diene character in the cyclohexadienyl ligand than is observed in its mononuclear complexes. ${ }^{5}$

We thank the S.R.C. for financial support and Johnson, Matthey and Company Limited for the loan of OsO_{4}.
(Received, 8th December 1975; Com. 1362.)
${ }^{1}$ S. A. R. Knox, J. W. Koepke, M. A. Andrews, and K. D. Kaesz, J. Amer. Chem. Soc., 1975, 97, 3942.
${ }^{2}$ A. J. Birch, P. E. Cross, D. A. White, J. Lewis, and S. B. Wild, J. Chem. Soc. (A), 1968, 332.
${ }^{3}$ D. A. T. Young, J. R. Holmes, and H. D. Kaesz, J. Amer. Chem. Soc., 1969, 91, 6968.
${ }^{4}$ C. W. Bradford, R. S. Nyholm, G. J. Gainsford, J. M. Guss, P. R. Ireland, and R. Mason, J.C.S. Chem. Comm., 1972, 87; G. Ferraris and G. Gervasio, J.C.S. Dalton, 1974, 1813.
${ }^{5}$ M. R. Churchill and F. R. Scholer, Inorg. Chem., 1969, 8, 1950.

