Ready Oxidative Addition of an Alkyl or Aryl Halide to a Tin(II) Alkyl or Amide; Evidence for a Free-radical Pathway[†]

By MICHAEL J. S. GYNANE, MICHAEL F. LAPPERT,* STUART J. MILES, and PHILIP P. POWER (School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary The addition of an alkyl or phenyl halide RX to $Sn[CH(SiMe_3)_2]_2$ (X = Cl, Br, or I) or $Sn[N(SiMe_3)_2]_2$ (X = Br or I) in n-hexane at 20 °C readily affords the 1:1adduct (or 1:2-adduct for RX = CH₂Br₂ or CH₂I₂) which shows two sets of diastereotopically distinct Me₃Si groups for Sn[CH(SiMe_3)_2]_2(X)R but not the nitrogen analogue; optical-activity and e.s.r. data suggest a free-radical mechanism with $\cdot SnY_2(X)$ and R· as intermediates [Y = (Me_3Si)_2CH or (Me_3Si)_2N].

BOTH the tin(II) alkyl (I)¹ and amide (II)^{2,3} are monomeric in benzene or cyclohexane solution.^{1,2} The metal atom is therefore not only co-ordinatively unsaturated but also in a low oxidation state (n - 2), where *n* is the most stable oxidation state). Such s^2 compounds are thus potential substrates to give d^{10} adducts, having the metal in the oxidation state *n*. Reactions of such type are known for certain Sn^{II} compounds;²⁻⁸ SnCl₂ insertions are especially well studied.

We now report that (i) an alkyl or, surprisingly, an aryl halide RX reacts with (I) or (II) under mild conditions to give the 1:1-adduct (III) or (IV); (ii) for (I) or (II) and CH_2X_2 (X = Br or I) a 2:1-adduct (V) [Y = (Me_3Si)_2CH or N(SiMe_3)_2] is formed; (iii) relative reactivities for oxidative addition are (I) > (II) and RI > RBr > RCl; (iv) the ¹H or ¹³C n.m.r. spectra of (III) and (IV) show interesting differences which suggest that the compounds, although isoelectronic, are not isostructural; and (v) e.s.r. spectra [for the system (I)-EtBr or (I)-PrⁿBr] and optical activity data [for (I), which with (+)-n-C₆H₁₃(Me)CHCl gives the racemate (III)] are consistent with a radical mechanism, probably of non-chain type with \cdot SnY₂(X) [Y = (Me_3Si)_2CH] as an

† No reprints available.

intermediate. Items (i)—(iv) are further illustrated in the Table. It had previously been shown that either pyrolysis⁴⁸ or irradiation^{4b} of di-n-butyltin(IV) polymer and an alkyl halide RX gives $\text{SnBun}_2(X)$ R and the proposal that RX is a trapping agent for the transient SnBun_2 now seems very plausible.

We assign the 1: 1-doublets found in the ¹H n.m.r. spectra of compounds (III) at τ ca. 9.9 to the two magnetically distinct diastereotopic Me₃Si environments, a result of the prochiral stereochemically rigid tetrahedral tin centre. Previous examples of diastereotopy in organotin compounds seem to have been solely with types R¹R²R³MM'A₂X (the groups A are diastereotopic) in which there is one chiral centre (MM' = CSn or SnC).⁹ The collapse of the doublet

Examples of $s^2 \rightarrow d^{10}$ oxidative addition reactions,^a and comments on the products

Reagents		Time (h) for complete		Products (III) or (IV) ^c
Substrate	Halide	reaction ^b	M.p. (°C)	Nature of Me ₃ Si ¹ H (or ¹³ C) n.m.r. signal ⁴
(I)	EtI	< 0.01	7677	doublet ^e (doublet)
(I)	CH_2Br_2	ca. 1	156 - 158	doublet
(I)	Bu ^t Cl ⁻	ca. 1	(b.p. 130 °C at 0.001 mmHg)	doublet
(I)	PhCl	ca. 80	(b.p. 124 °C at 0.001 mmHg)	doublet
(II)	MeI	ca. 0.2	78—84	singlet
(II)	MeBr	ca. 3	3637	singlet ^r
(II)	Bu ^t Cl	g		<u> </u>
(II)	PhI	$\tilde{c}a.4$	(b.p. 105 °C at 0.001 mmHg)	singlet

^a Other organic Sn^{II} examples are for (a) (I) with $[Mo(CO)_3(\eta-C_5H_5)X]$ (X = H or Me), $[PtCl(PEt_3)]_{2,5}$ MeI, or $(Me_3Si)_2CHCl;^6$ (b) (II) with $[Fe(CO)_2(\eta-C_5H_5)Me];^2$ (c) $Sn(\eta-C_5H_5)_2$ with RI (R = Me or CH_2), RBr (R = CH_2: CHCH_2 or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = PhCH_2, Ph_3C, CH_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = PhCH_2, Ph_3C, CH_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = normal constant), 0 or CHC_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = normal constant), 0 or CH_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = normal constant), 0 or CH_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = normal constant), 0 or CH_2: CHCH_2, or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = Me or Pr) or RBr (R = normal constant), 0 or CH_2: CHCH_2, or EtO_2CCH_2), 7 or EtO_2CCH_2), 7 or $[Fe_3(CO)_9];^6$ (d) $Sn(acac)_2$ with RI (R = alkyl) or CH_2: C = normal constant), 0 = normal constant), 0 = normal constant), 0 = normal constant, 0 = normal constant), 0 = normal conPhCl at 20 or 80 °C.

upon addition of strong base is attributed to formation of a stereochemically non-rigid five-co-ordinate tin(IV) adduct (see also ref. 9), in which y(Sn-Cl) is at 318 cm⁻¹. The singlet observed in the related amides (IV) arises either because of planarity at nitrogen or a very low N-inversion barrier.

The e.s.r. data on the reactions of (I) with an alkyl halide RBr relate to (a) R = Et or Pr^n in benzene at room temperature when in the presence of the spin-trap nitrosodurene (ArNO) a strong signal of the nitroxide Ar(R)NO was observed, and (b) R = Et in hexane at -60 °C when a broad singlet (g = 2.0214) was obtained which decayed

as the reaction went to completion, and is attributed to \cdot SnY₂(Br) rather than \cdot SnY₂(R) [Y = (Me₃Si)₂CH] (cf. ref. 10; for $\cdot \text{SnY}_3 g = 2 \cdot 0094$). We thus favour a mechanism similar to that proposed for the $d^{10} \rightarrow d^8$ oxidative addition of methyl iodide to [Pt(PPh_)].11

$$SnY_2 + RX \rightarrow SnY_2(X) + R \rightarrow (III)$$

We thank I.C.I. Ltd. for the award of a Fellowship to M.J.S.G., and S.R.C. for a studentship to S.J.M.

(Received, 21st January 1976; Com. 061.)

- ¹ P. J. Davidson and M. F. Lappert, J.C.S. Chem. Comm., 1973, 317.
 ² D. H. Harris and M. F. Lappert, J.C.S. Chem. Comm., 1974, 223.
 ³ C. D. Schaeffer and J. J. Zuckerman, J. Amer. Chem. Soc., 1974, 96, 7160.
 ⁴ (a) U. Schröer and W. P. Neumann, Angew. Chem. Internat. Edn., 1975, 14, 246; (b) W. P. Neumann and A. Schwarz, *ibid.*, p. 812.
 ⁵ J. D. Cotton, P. J. Davidson, D. E. Goldberg, M. F. Lappert, and K. M. Thomas, J.C.S. Chem. Comm., 1974, 893.
 ⁶ J. D. Cotton, P. J. Davidson, and M. F. Lappert, J.C.S. Dalton, in the press.
 ⁷ K. D. Bos, E. J. Bulten, and J. G. Noltes, J. Organometallic Chem., 1975, 2097.
 ⁸ P. G. Harrison, T. J. King, and J. A. Richards, J.C.S. Dalton, 1975, 2097.
 ⁹ M. Gielen and H. Mokhtar-Jamai, J. Organometallic Chem., 1971, 91, C33, and refs. therein.
 ¹⁰ P. J. Davidson, A. Hudson, M. F. Lappert, and P. W. Lednor, J.C.S. Chem. Comm., 1973, 829.
 ¹¹ M. F. Lappert and P. W. Lednor, J.C.S. Chem. Comm., 1973, 948.