
Biosynthesis of Deoxyherqueinone in *Penicillium herquei* from [¹³C]Acetate and [¹³C]Malonate. Assembly Pattern of Acetate into the Phenalenone Ring System

By Thomas J. Simpson

(Research School of Chemistry, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia)

Summary The ¹³C-n.m.r. spectra of deoxyherqueinone (I) enriched with sodium [1-¹³C]-, [2-¹³C]-, and [1,2-¹³C₂]acetate, and diethyl [2-¹³C]malonate by the fungus *Penicillium herquei* indicate formation of the phenalenone ring system from seven intact acetate units and the mode of folding of the precursor heptaketide chain; a clear acetate 'starter' effect is apparent in the [2-1³C]malonateenriched ¹³C-n.m.r. spectrum. DEOXYHERQUEINONE (I) is one of a group of antibiotics based on the phenalenone ring system, produced by *Peni*cillium herquei. ¹⁴C-Tracer studies have indicated the polyketide origin of the nucleus and the mevalonate origin of the C_5 side chain;¹ the inter-relationships among this group of phenalenones have been elucidated by labelling

studies with *P. herquei.*² However, the nature of the intermediates leading from acetate and malonate to the phenalenone ring system, in common with the majority of phenolic polyketides, is unknown. Three alternate foldings of a single heptaketide chain, as well as multi-chain condensations, could account for the formation of the phenalenone ring system. With the advent of ¹³C-n.m.r. spectroscopy in biosynthetic studies it has become possible to obtain direct information on these intermediates.³

TABLE. ¹³C-Chemical shift (δ , relative to Me₄Si) of deoxyherqueinone diacetate (II); coupling constants (Hz) of $[1,2^{-13}C]$ acetate-enriched (II); and enrichments observed in $[2^{-13}C]$ malonate-enriched (II).

Contra	matonate-en		En sie haar oo de
Carbon	δ/p.p.m.	¹ J (¹³ C ¹³ C)	Enrichment ^a
1	$125 \cdot 2$	55	0.9
2	112.4	65	2.8
3	165.5	64	0.9
	119.8	68	$2 \cdot 9$
4 5	$173 \cdot 1$	68	0.9
6	107.6	60	$2 \cdot 9$
7	173.9	59	1.0
8	141.3	85	2.5
9	142.9	85	1.0
10	110.9	56	2.7
11	148.2	68	1.0
12	121.6	68	3.3
13	$142 \cdot 1$	42	1.3
14	$23 \cdot 4$	42	1.9
1'	14.5	40	1.1
2'	91.0	40	1.6
3′	42.9	37	1.0
4'	20.3		1.7
5'	25.5	37	1.6
MeO	59.9		0.9
CH3CO	20.7,21.1		1.3,1.3
CH ₃ CO	$167 \cdot 3, 166 \cdot 3$		1.0,1.0

^a See J. S. E. Holker, R. D. Lapper, and T. J. Simpson, *J.C.S. Perkin I*, 1974, 2135, for method of calculation.

Deoxyherqueinone was isolated, along with major amounts of what is believed to be herqueichrysin, a phenalenone of uncertain structure,⁴ from the mycelium of *P. herquei* (C.M.I. 112950). The ¹³C-n.m.r. spectrum of the diacetate (II) was assigned (Table) from literature values and detailed analysis of the fully proton-coupled spectrum. In order to facilitate comparison of incorporation efficiencies into the polyketide- and mevalonate-derived portions of the molecule, proton-noise-decoupled (p.n.d.) spectra were determined in the presence of $0.1 \,\mathrm{M}$ [Cr(acac)₃] under GATED-2 decoupling conditions,⁵ whereupon the very wide range of line intensities due to variable T_1 and N.O.E. factors was removed and almost integral intensities for all resonances in the natural abundance spectrum were obtained (Figure).

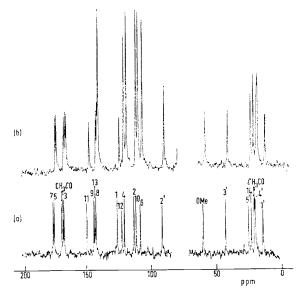
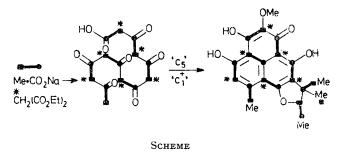



FIGURE. Proton-noise-decoupled, Fourier transform ¹³C-n.m.r spectra of deoxyherqueinone diacetate (II), (a) at natural abundance, (b) enriched with $[2-1^{3}C]$ malonate, in $0.1 \, \text{M}$ [Cr(acac)₃] in CDCl₃ under GATED-2 decoupling.

The p.n.d. ¹³C-n.m.r. spectra of the $[1^{-13}C]$ - and $[2^{-13}C]$ acetate enriched samples showed the enhancements anticipated for the acetate origin of the molecule (Scheme). The observed enrichments were very high with *ca*. 9% excess ¹³C-abundance at each labelled position, and with *equal* incorporation into the polyketide- and mevalonate-derived parts of the molecule. The $[2^{-13}C]$ malonate-enriched spectrum showed high enrichment of six positions in the phenalenone nucleus: C(2), C(4), C(6), C(8), C(10), and C(12). The C(14) methyl, together with C(2'), C(4'), and C(5') are also enriched but to less than half the extent (Table). Thus a clear acetate 'starter' effect is observed, indicating that the phenalenone ring system is formed from a single heptaketide chain.

The p.n.d. ${}^{13}C$ -n.m.r. spectrum of the $[1,2-{}^{13}C]$ acetatederived sample showed nine pairs of ${}^{13}C-{}^{13}C$ couplings, indicating that C(14)-C(13), C(12)-C(11), C(10)-C(1), C(2)-C-(3), C(4)-C(5), C(6)-C(7), C(8)-C(9), C(5')-C(3'), and C(2')-C(1') originate from intact acetate units. Thus the phenalenone ring system is formed by condensation of a heptaketide chain folded as shown (Scheme).

Other fungal phenalenones and their related metabolites⁶ have been shown to be polyketide in origin and a similar assembly pattern of acetate units in their formation is

 ¹ R. Thomas, Biochem. J., 1961, 78, 807.
² A. P. Kriegler and R. Thomas, Chem. Comm., 1971, 38.
³ A. G. McInnes, D. G. Smith, J. A. Walter, L. C. Vining, and J. L. C. Wright, J.C.S. Chem. Comm., 1975, 66; J. A. Gudgeon, J. S. E. Holker, and T. J. Simpson, *ibid.*, 1974, 636; P. S. Steyn, R. Vleggaar, P. L. Wessels, and D. B. Scott, *ibid.*, 1975, 193.
⁴ N. Narasimhachari and L. C. Vining, J. Antibiolics, 1972, 25, 155; D. D. Halton and G. A. Morrison, Tetrahedron Letters, 1975, 1442. 1443.

⁸ O. A. Gansow, A. R. Burke, and G. N. La Mar, J.C.S. Chem. Comm., 1972, 456; R. Freeman, H. D. W. Hill, and R. Kaptein, J. Magnetic Resonance, 1972, 7, 327

⁶ R. Thomas, Pure Appl. Chem., 1973, 34, 515.

7 A. Karlsson, G. Sartori, and R. J. White, European J. Biochem., 1974, 47, 251.

J.C.S. CHEM. COMM., 1976

likely. In the only previous biosynthetic study using [¹³C] malonate, the malonate-derived carbon atoms in the 'ansa' chain of rifamycin S were enriched, with no significant enrichment of the acetoxy-substituent being observed.7

The author thanks Mrs. M. Anderson and Mrs. J. Rothschild for the microbiological work.

(Received, 27th January 1976; Com. 088.)