Optical Resolution of a Substituted 6,11-Diphenyldibenzo[**b**,**f**][1,4]diazocine and the Racemization Barrier

By Dominique Olliéro, Jean-Marie Ruxer, Arlette Solladié-Cavallo, and Guy Solladié*

(Laboratoire de Chimie Organique de l'Ecole Nationale Supérieure de Chimie, Université L. Pasteur, B.P. 296/R8, 67008 Strasbourg, France)

Summary 2-formyl-6,11-diphenyldibenzo[b, f][1,4]diazocine has been resolved into both optical isomers and the racemization barrier has been determined.

SUBSTITUTED 6,11-diphenyldibenzo[b, f][1,4]diazocines (1) possess a three-dimensional tub-like conformation (the

eight-membered ring being a diazacyclo-octatetraene system) and as such are potentially resolvable into optically active forms. A value of at least 25 kcal mol⁻¹ for the inversion barrier for compounds (1) would be expected from the effects on the inversion barrier of cyclo-octatetraene of non-bonded interactions in the transition state $^{1-4}$ and of

fused benzene rings.^{4,5} Compounds (1) should therefore be resolvable and stable enough to be handled.

The 60 MHz ¹H n.m.r. spectra (CDCl₃, Me₄Si, 35 °C) of (1a) and (1b) show accidental equivalence of the isopropyl methyl protons (δ 1·18, d, 6H) and of the benzyl methylene protons (δ 3.94, s, 2H) respectively. However, nonequivalences are observed for the isopropyl methyl groups in the ¹³C n.m.r. spectrum of (1a): $\Delta \delta = 24.27 - 24.20 = 0.07$ p.p.m. in CDCl₃ (Me₄Si reference) and $\Delta \delta = 23.89 - 23.61$ = 0.28 p.p.m. in $(CD_3)_2SO = 39.60 \text{ p.p.m.}$, confirming that no inversion occurs at 35 °C as predicted. The variation of $\Delta\delta$ with temperature [0.220, 0.187, and 0.120 p.p.m. at respectively 83, 110, and 150 °C in (CD₃)₂SO might be due to temperature-dependent chemical shifts^{4,6} (a complication of real significance for ΔG_e^{\ddagger} determinations) but it appears that no rapid inversion occurs at 150 °C.

The optical resolution of the aldehyde (1d), prepared from (1c), was attempted. Treatment of $(1c)^7$ with Nbromosuccinimide in CCl₄ in the presence of a catalytic amount of aa'-azobisisobutyronitrile⁸ gave the corresponding bromide $(X = CH_2Br, Y = H)$ which was directly oxidised by Me₂SO-HCO₃Na⁹ to the aldehyde (1d), † m.p. 228-231 °C (overall yield 69%). The optical resolution of (1d) was performed by crystallisation of a chiral oxazolidine (1e) prepared from stoicheiometric amounts of (1d) and 1ephedrine in methylene chloride with molecular sieves at room temperature. It has already been shown¹⁰ that only two diastereoisomers are formed during such a reaction, the asymmetric carbon atom which is created having the (R)configuration. This is confirmed by the 60 MHz ¹H n.m.r. spectrum of (1e) which shows only two singlets for the diastereotopic H₁ protons (δ 4.60 and 4.65). One crystallisation of (1e) from light petroleum led to optically pure crystals: 19% yield, one singlet for H₁ (δ 4.65), m.p. 157—160 °C, $[\alpha]_{\rm D}^{25}$ – 58° (CHCl₃). After chromatography on silica gel, the optically pure aldehyde (1d) was recovered, m.p. 184—186 °C, $[\alpha]_{D}^{25}$ + 277° (CHCl₃, c 1.38).

Upon heating at 175 °C under nitrogen a partially optically active sample of the diazocine (1d) (optical purity 34%) dissolved in biphenyl, a slow racemization process was observed with < 10% of thermal decomposition products being formed. The reaction was first order and the rate constant $(1.14 \times 10^{-5} \text{ s}^{-1})$, determined from the optical rotation of the recovered sample (purified by chromatography) led, from the Eyring equation, to: $\Delta G^{\ddagger} = 37 \text{ kcal mol}^{-1} (175 \text{ °C}).$

This result, the first reported value for the racemisation barrier of a dibenzodiazacyclo-octatetraene,[‡] is consistent with strong nonbonded interactions between H_{α} and phenyl groups and with some loss of conjugation in the Ph-C=N units in the transition state.

(Received, 29th July 1975; Com. 868.)

† Satisfactory elemental analyses were obtained for all new products. N.m.r. spectra were in agreement with the structure assigned.

 \ddagger Until now only lower limits for racemization barrier of such systems have been reported^{2,3} because the dibenzo[e,g][1,4] diazocines which were investigated decomposed before racemizing.

- ¹ K. Mislow and H. D. Perlmutter, J. Amer. Chem. Soc., 1962, 84, 3591.

- ¹ N. L. Allinger, W. Szkrylabo, and M. A. Darooge, J. Org. Chem., 1963, 28, 3007.
 ³ D. M. Hall and J. M. Insole, J. Chem. Soc., 1964, 2326.
 ⁴ G. H. Senker, D. Gust, P. X. Riccobono, and K. Mislow, J. Amer. Chem. Soc., 1972, 94, 8626.
- ⁵ G. W. Buchanan, Tetrahedron Letters, 1972, 665.
- ⁶ H. P. Figeys and A. Dralants, Tetrahedron Letters, 1971, 3901.
- 7 D. Olliéro and G. Solladie, Synthesis, 1975, 246.
- ⁸ L. Horner and E. H. Winkelmann, Angew. Chem., 1959, 71, 349.
- N. Kornblum, W. J. Jones, and G. J. Anderson, J. Amer. Chem. Soc., 1959, 81, 4113.
 L. Neelakantan, J. Org. Chem., 1971, 36, 2256; R. Kelly and V. van Rheenen, Tetrahedron Letters, 1973, 1709.