In vitro Incorporation of ${ }^{2} \mathrm{H}$ at the $\mathbf{C - 1 0}$ Methyl Group of Obtusifoliol during the Enzymatic Cleavage of the $\mathbf{9 \beta , 1 9 \beta}$-Cyclopropane Ring of Cycloeucalenol

By Alain Rahier, Pierre Benveniste,* and Luigi Cattel
(Laboratoire de Biochimie Végétale, E.R.A. $n^{\circ} 487$ du C.N.R.S., Institut de Botanique, 67083 Strasbourg-Cédex, France, and Istituto di Chimica Farmaceutica Applicata, Corso Raffaello 31, 10125 Torino, Italy)

Summary Incubation of cycloeucalenol with microsomes of Zea mays embryos in $\mathrm{D}_{2} \mathrm{O}$ yields $\left[19-{ }^{2} \mathrm{H}\right]$ obtusifoliol.
$9 \beta, 19 \beta$-CyClopropyl sterols, cycloartenol (1), 24-methylene cycloartanol (2), and cycloeucalenol (3) are considered to be intermediates in sterol biosynthesis in photosynthetic eukaryotes. ${ }^{1}$ When germinating peas are grown in $\mathrm{D}_{2} \mathrm{O}$, $\left[19-{ }^{2} \mathrm{H}\right]$ sitosterol is biosynthesized, ${ }^{2}$ suggesting that ${ }^{2} \mathrm{H}$ incorporation occurs during $9 \beta, 19 \beta$-cyclopropane ring opening of $9 \beta, 19 \beta$-cyclopropyl sterols, an obligatory step in phytosterol biosynthesis. We have shown previously ${ }^{3}$ that opening of the cyclopropane ring occurs when (3) is incubated in the presence of higher plant microsomes giving obtusifoliol (4), another presumed intermediate in phytosterol biosynthesis. ${ }^{1}$ Under the same conditions (1) was

(1) $R^{1}=R^{2}=M e ; R^{3}=>M e$
(4) $R^{1}=H, R^{2}=\mathrm{Me}, R^{3}=\underbrace{C M}_{M e}$
(2) $R^{1}=R^{2}=M e: R^{3}=\longrightarrow M e$
(5) $R^{2}=R^{2}=M e, R^{3}=\underbrace{M e}_{M e}$

(6) $\begin{aligned} & \mathrm{R}^{\prime}=H \quad R^{2}=\text { Me } R^{3} \\ & E=\text { enzyme group }\end{aligned}$
not converted into lanosterol (5). We report here evidence that the ${ }^{2} \mathrm{H}$ incorporation at $\mathrm{C}-19$ described earlier ${ }^{2}$ occurs during enzymic conversion of (3) into (4).

Microsomes from maize embryos were prepared as described earlier. ${ }^{3}$ They were washed with $\mathrm{D}_{2} \mathrm{O}$ with phosphate buffer ($\mathrm{pH} 8 \cdot 3$), containing mercaptoethanol (5 mm) and $\mathrm{MgCl}_{2}(2 \mathrm{~mm})$. After centrifugation $(100,000 \times \mathrm{g}$, 60 min), the pellets were resuspended in the same medium and incubated ($30^{\circ} \mathrm{C} ; 12 \mathrm{~h}$) in the presence of cycloeucalenol (3) $(150 \mu \mathrm{M})$ emulsified with Tween $80(0 \cdot 1 \%$ in the incubation). Extraction of sterols and chromatography were performed as described. ${ }^{3}$ The 4α-methyl sterols were analysed by g.l.c.-mass spectroscopy as their $\mathrm{Me}_{3} \mathrm{Si}$ ethers. Under these conditions, the substrate (3) was unambiguously separated from the product (4) of the reaction and mass spectra were recorded. The average yield for the conversion of (3) into (4) was $>\mathbf{7 0} \%$. The mass spectra showed a 66% incorporation of ${ }^{2} \mathrm{H}$ in the molecular ion of the $\mathrm{Me}_{3} \mathrm{Si}$ ether of (4) (Table). No incorporation of ${ }^{2} \mathrm{H}$ was detected in charged (3). The ${ }^{2} \mathrm{H}$ label was retained in fragments ${ }^{4,5}$ a, b, and c (Table), in agreement with the hypothesis of the location of ${ }^{2} \mathrm{H}$ at $\mathrm{C}-19$.

Table
Mass spectral determination of ${ }^{2} \mathrm{H}$ incorporation in $\mathrm{Me}_{3} \mathrm{Si}$ ether of (4) and in fragments ${ }^{4}$ (average of three experiments).

To prove this point, the n.m.r. (90 MHz) spectra of the mixture of (3) (30%) and (4) (70%) were recorded in the presence of increasing amounts ($0 \cdot 0-1.4$ molar ratio) of the shift reagent $\mathrm{Eu}(\mathrm{fod})_{3}$. At ca $1: 1$ molar ratio, the 4α - and 10 -methyl-resonances are strongly shifted downfield ${ }^{6,7}$ and clearly separated from other signals. Comparison of the spectra of pure (4) and of the deuteriated product shows a decrease in the height and a broadening of the $10-\mathrm{Me}$ signal in the deuteriated product. The broadening is caused by differences in the chemical shifts for CH_{3} and $\mathrm{CH}_{2} \mathrm{D}$, and by the $\mathrm{CH}_{2} \mathrm{D}$ triplet. ${ }^{8}$ Moreover, integration indicated an incorporation of 0.6 ± 0.1 of ${ }^{2} \mathrm{H}$, using the 4α-methylresonance of obtusifoliol as internal standard, thus confirming that the ${ }^{2} \mathrm{H}$ incorporation into (4) detected by mass spectroscopy occurs essentially at the 10 -methyl-group. These results allow us to conclude that during transformation of cycloeucalenol into obtusifoliol in $\mathrm{D}_{2} \mathrm{O},{ }^{2} \mathrm{H}$ is incorporated in the 10 -methyl group, and suggest that this enzymic reaction could be considered as a biochemical step equivalent to an acid-catalysed cyclopropane ring opening reaction ${ }^{9}$ in agreement with the mechanism previously proposed. ${ }^{4}$

Cycloartenol (1) was incubated with microsomes from maize embryos in $\mathrm{D}_{2} \mathrm{O}$ (see above). As expected, ${ }^{\mathbf{3}}$ (1) was not converted into lanosterol (5). Moreover, recovered (1) had not incorporated ${ }^{2} \mathrm{H}$, as was also the case for unchanged (3). It has been suggested that the conversion of (3) into (4) involves an intermediate (6) in which the C-9 carbonium ion is stabilised (ionic pair or covalent bond) by a suitable enzymatic group; (4) is obtained via a trans antiperiplanar elimination of $8 \beta-\mathrm{H}$ from (6). No incorporation of ${ }^{2} \mathrm{H}$ was shown to occur into (3) during its conversion into (4); it follows that the transformation of (3) into (6) proceeds without exchange of the 19 -proton with protons from the medium and so this latter step could be considered to be irreversible. This interpretation, however, implies that the 10 -methyl group in (6) retained its free rotation.

We thank Mrs. Elizabeth Kremp (Institut de Chemie, Strasbourg) for n.m.r. spectra and Dr. Pierrette Bouvier for g.1.c.-mass spectral measurements.
(Received, 19th January 1976; Com. 051.)
${ }^{1}$ L. J. Goad and T. W. Goodwin, in 'Progress in Phytochemistry,' eds. L. Rheinhold and Y. Liwschitz, Interscience, London, 1972, vol. III, p. 113.
${ }^{2}$ E. Caspi and J. Sliwowski, J. Amer. Chem. Soc., 1975, 97, 5032.
${ }^{3}$ R. Heintz and P. Benveniste, J. Biol. Chem., 1974, 249, 4267.
${ }^{4}$ L. J. Goad, B. L. Williams, and T. W. Goodwin, European J. Biochem., 1967, 3, 232.
${ }^{5}$ H. Budzikiewicz, J. M. Wilson, and C. Djerassi, J. Amer. Chem. Soc., 1963, 85, 3688.
${ }^{6}$ M. Kocor and J. St. Pyrek, J. Org. Chem., 1973, 38, 3688.
${ }^{7}$ T. Suga and T. Shishibori, Phytochemistry, 1975, 14, 2411.
${ }^{8}$ C. G. Macdonald, J. S. Shannon, and S. Sternhell, Austral. J. Chem., 1964, 17, 38.
${ }^{9}$ H. R. Bentley, J. A. Henry, D. S. Irvine, and F. S. Spring, J. Chem. Soc., 1953, 3673.

