Surface Exchange Reaction Calorimetry: Measurement of Heats of Chemisorption of CO₂ on ZnO

By Tetsuo Morimoto and Haruto Muraishi

(Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan)

Summary The heats of chemisorption of CO_2 on ZnO were measured by immersion of CO_2 -covered ZnO in water.

CARBON DIOXIDE molecules chemisorbed on ZnO, which are considered to form carbonate ions,¹ have been found to be desorbed from CO_2 -covered surfaces when they are exposed to water vapour at room temperature, resulting in the formation of surface hydroxy-groups.^{2,3} It may reasonably be expected that the similar exchange reaction of chemisorbed CO₂ would occur more rapidly in liquid water than in the vapour. If the reaction occurs quantitatively in water, we can calculate the heat of chemisorption of CO₂ on ZnO from heat of immersion measurements in water by determining (i) the heat of immersion of bare ZnO surfaces

Degassing temperature (1/K-273.15)

FIGURE 1. Amount of chemisorbed CO₂ remaining on the ZnO surface as a function of degassing temperature.

 (H_i) and (ii) the heat of immersion of CO_2 -covered ZnO (H_i') . The heat of chemisorption, $Q_{\mathbf{s}}(\Gamma)$, of $\operatorname{CO}_{\mathbf{s}}$ on ZnO can then be obtained by equation (1), where $Q_d(\Gamma)$ is the heat of

$$Q_{\mathbf{a}}(\Gamma) = Q_{\mathbf{d}}(\Gamma) + H_{\mathbf{i}} - H_{\mathbf{i}}' \tag{1}$$

dissolution of CO_2 in water, and Γ the number of molecules. In deriving equation (1), the assumption is made that all the CO₂ molecules liberated from the exchange reaction are dissolved in water.

FIGURE 2. Heat of immersion of CO₂-covered ZnO in water as a function of degassing temperature.

We now report the application of immersion calorimetry to the determination of the heat of chemisorption of CO_2 on ZnO. Powdered crystalline ZnO was first evacuated at 873 K and 10^{-5} mmHg for 4 h in order to remove surface impurities such as chemisorbed H₂O and CO₂ molecules,⁴

and then the sample was kept in an atmosphere of 50 mmHg of CO_2 for 2 h at room temperature to adsorb CO_2 molecules, followed by evacuation of the sample at room temperature for 2 h. The CO₂-chemisorbed ZnO sample thus formed was re-evacuated at higher temperatures (373-873 K) for 2 h, which produced surfaces with a different covering of chemisorbed CO2. The amount of chemisorbed CO₂ remaining on the ZnO surfaces was analysed by the successive ignition loss method;² the data obtained are shown in Figure 1 as a function of degassing temperature. The heat of immersion⁵ of CO₂-covered ZnO in water was measured at 301.15 K, and the data obtained are illustrated in Figure 2. The broken line in Figure 2 represents the heat of immersion of the ZnO sample which had been prepared by the first evacuation of the original material at 873 K for 4 h in vacuo and had no chemisorbed CO₂. Figure 2 indicates that the heat of immersion is least on the ZnO sample fully covered with chemisorbed CO₂, it increases with the desorption of CO₂, and reaches the value for the bare sample after degassing at 873 K. All the CO₂ molecules liberated from the ZnO surfaces by the exchange reaction have been found to be dissolved in the water.6

FIGURE 3. Heat of chemisorption of CO₂ on ZnO as a function of degassing temperature.

From the data in Figures 1 and 2 and equation (1), we can calculate the heat of chemisorption of CO_2 on ZnO (Figure 3). It is interesting that the heat of chemisorption of CO_2 on ZnO increases with increasing degassing temperature of the sample, *i.e.* with the ZnO sample which has less chemisorbed CO₂, suggesting that the surface of the sample tested had a particular heterogeneity.

(Received, 21st January 1976; Com. 059.)

- ¹ K. Atherton, G. Newbold, and J. A. Hockey, Discuss. Faraday Soc., 1971, 52, 33.
- ² T. Morimoto and K. Morishige, Bull. Chem. Soc. Japan, 1974, 47, 92. ³ T. Morimoto and K. Morishige, J. Phys. Chem., 1975, 79, 1573.
- ⁴ M. Nagao, K. Morishige, T. Takeshita, and T. Morimoto, Bull. Chem. Soc. Japan, 1974, 47, 2107.
- ⁵ M. Nagao and T. Morimoto, J. Phys. Chem., 1969, 73, 3809.
- ⁶ Unpublished work.