Resolution, Spectra, Dipole Strength, and Rotational Strength of (+)-(1S,5S)-Bicyclo[3.2.0]heptan-3-one

By Jan C. A. Windhorst
(Gorlaeus Laboratories, The University of Leiden, P.O. Box 75, Leiden, The Netherlands)

Summary Enantiomerically pure (+)-($1 S, 5 S$)-bicyclo[$3 \cdot 2 \cdot 0]$ heptan- 3 -one has been prepared and characterized, and its c.d. spectra, rotational strength, and dipole strength have been determined; its rotational strength is unusually large.

Recently Weissberger ${ }^{1}$ reported the exceptional rotatory power of the dissymmetric cyclopentanone (1), but since its u.v. and c.d. spectra were recorded in different solvents
values for its rotational strength (R.S.) and dipole strength (D.S.) cannot be compared. We have prepared (3), another dissymmetric cyclopentanone, from (-)-(1R,2R)-cyclobutane-1,2-dicarboxylic acid,2,3 according to the procedure for racemic (3),4,5 via (-)-(1S,5S)-bicyclo-[3.2.0]heptane-3,3-dicarboxylic acid (2) (Scheme). Crude (3) was purified by preparative g.l.c. (Varian A 90, OV 210 , $\left.T_{\mathrm{c}} 110^{\circ} \mathrm{C}\right)^{3}$ and characterized by i.r., u.v., c.d. ${ }^{1} \mathrm{H}$ n.m.r. and mass spectroscopy, and comparison with data for

(1)

Pure (3) showed: $[\alpha]_{\mathrm{D}}+568^{\circ}, \quad[\phi]_{\mathrm{D}}+625^{\circ}, \quad(c \quad 0.333$, iso-octane); u.v. $\lambda_{\max }$ (iso-octane): 290, 300, 311, and 323 $\mathrm{nm}(\epsilon: 41 \cdot 51,52 \cdot 65,48 \cdot 29$, and $24 \cdot 70$, respectively); c.d. $\lambda_{\max }$ (iso-octane): $290,300,311$, and $323 \mathrm{~nm}(\Delta \epsilon: 6 \cdot 87$, $9 \cdot 73,9 \cdot 87$, and $5 \cdot 31$, respectively); ${ }^{1} \mathrm{H}$ n.m.r. $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $0 \cdot 49-2 \cdot 10(\mathrm{~m})$; i.r. (neat) $\nu_{\max } 1743 \mathrm{~s} \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ; m / e$ 110 ; D.S. 6.5×10^{-51} (S.I. units); \dagger R.S. $=22.0 \times 10^{-53}$

Figure C.d. spectra of (3).
(S.I. units) $\dagger \ddagger$ Although Weissberger does not give a value for the R.S. of (1) we estimate it to be ca. 6-7 $\times 10^{-52}$ S.I. units from its c.d. spectrum. The R.S. value for (3) is unusually large for a saturated ketone; the absolute value for the R.S. of $(-)-(1 R, 6 R)$-bicyclo[4.3.0]nonan-8one is 17.0×10^{-53} S.I. units. ${ }^{4}$
(Received, 12th December 1975; Com. 1382.)
dissymmetric bicyclic cyclopentanones, ${ }^{3}$ all three methods giving the same result. The enantiomeric purity of (3), determined by circular polarization of luminescence ${ }^{3,8}$ was $c a .100 \%$. U.v. and c.d. spectra were recorded in iso-octane at room temperature with a spectral resolution of 1 nm (Figure).
\dagger The experimental values for R.S. and D.S. were obtained from the u.v. and c.d. spectra where ϵ and $\Delta \epsilon$ were plotted as functions of $\ln \bar{v}$, and the area under the curve determined; cf. also S. F. Mason, Quart. Rev., 1963, 17, 20.
\ddagger The dissymmetry factor is small enough $\left[g_{\max }(\lambda)=0.22\right]$ to neglect deviations from the Bouguer-Lambert-Beer law; cf. also F. Woldbye and S. Bagger, Acta Chem. Scand., 1966, 20, 1145.

[^0]
[^0]: ${ }^{1}$ E. Weissberger, J. Amer. Chem. Soc., 1975, 96, 7219
 ${ }^{2}$ L. J. Goldsworthy, J. Chem. Soc., 1924, 125, 2012; E. C. Coyner and W. S. Hillman, J. Amer. Chem. Soc., 1949, 71, 324; F. B. Kipping and J. J. Wren, J. Chem. Soc., 1957, 3246, 3248.
 ${ }^{3}$ J. C. A. Windhorst, PhD. Thesis, Leiden University, 1975.
 4 J. Meinwald, J. J. Tufariello, and J. J. Hurst, J. Org. Chem., 1964, 29, 2914.
 ${ }^{5}$ J. J. Tufariello and W. J. Kissel, Tetrahedron Letters, 1966, 6145.
 ${ }^{6}$ W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, J. Amer. Chem. Soc., 1961, 83, 4013.
 ${ }^{7}$ We used valence force field calculations to compute the geometry of ($\mathbf{3}$), and this computed geometry was used in the R.S. calculation (cf. also: ref. 3; and C. Altona and H. Faber, Fortschr. Chem. Forsch., 1974, 1, 45 and references cited therein).
 ${ }^{8}$ W. C. M. C. Kokke, J. Amer. Chem. Soc., 1974, 96, 2627.

