The Effect of Ligand Environment on the Mechanism of Substitution at Chromium(III)

By T. RAMASAMI and A. GEOFFREY SYKES*

(Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT)

Summary Kinetic and thermodynamic data for the formation and aquation of acidopenta-amminechromium(III) complexes provide strong evidence for a dissociative mechanism.

RATE constants and equilibrium constants as defined in equations (1) and (2), with $K_{\rm IS} = k_{\rm an}/k_{\rm aq}$ and $k_{\rm f} = K_{\rm OS}-k_{\rm an}$, have been determined by conventional spectrophoto-

$$[Cr(NH_3)_5H_2O]^{3+} + X^{-} \underbrace{\overset{K_{08}}{\longleftarrow}}_{h} [Cr(NH_3)_5H_2O]^{3+}, X^{-}$$
(1)

$$[Cr(NH_3)_5H_2O]^{3+}, X - \frac{R_{an}}{k_{aq}} [Cr(NH_3)_5X]^{2+} + H_2O$$
 (2)

metric techniques for $X^- = NCS^-$, $CCl_3CO_2^-$, $CF_3CO_2^-$, CI^- , Br⁻, and I⁻, at 50 °C, I = 1.00M (LiClO₄). Values obtained are compared (Table) with data for $X^- = C_2O_4H^-$, $C_2O_4^{2-,1}$ and $^+NH_3CH_2CO_2^{-,2}$ as well as H_2O exchange studies.³ The rate constants k_{aq} were determined directly by studying the aquation of the complexes $[Cr(NH_3)_5X]^{2+}$.

Rate constants $k_{\rm f}$ for the formation of $[\rm Cr(NH_3)_5X]^{2+}$ were obtained under conditions in which there was no contribution from $k_{\rm aq}$ (X⁻ = NCS⁻, CCl₃CO₂⁻), and in other cases from equilibration rate constants after allowing for $k_{\rm aq}$. With iodide, too high a concentration of I⁻ is required to allow precise values of $k_{\rm f}$ to be determined. It was possible with NCS⁻ (as with C₂O₄H⁻, C₂O₄²⁻, and +NH₃CH₂CO₂⁻) to obtain $K_{\rm os}$ from the kinetic treatment.

The data as summarised show that rate constants $k_{\rm f}$ vary by only one order of magnitude for eight ions with 1 charge. The value for $C_2O_4^{2-}$ is understandably larger and is outside this range because K_{08} is larger for a 2— charged species. Comparable $k_{\rm f}$ values for the anation of [Cr-(H₂O)₆]³⁺ give a range of values varying by at least three orders of magnitude.⁴ The choice of anions is limited in the case of the penta-ammine series owing to interference from subsequent reactions involving loss of ammonia.⁵ It has been suggested previously⁶ that the ratio of anation ($k_{\rm f}$) rate constants for the reactions of NCS⁻ and Cl⁻ is diagnostic of the mechanism. The value of this ratio for [Cr(H₂O)₆]³⁺ is TABLE

Summary of kinetic and thermodynamic data for the formation and aquation of $[Cr(NH_{a})_{5}X]^{2+}$ complexes at 50 °C, $[H^{+}] = 0.1-0.5M$ (except as stated), I = 1.00M (LiClO₄).

Ligand X ⁻ $10^{4} k_{t}$ / $10^{4} k_{an}^{b}$ / $10^{4} k_{aq}$ / $K_{OS}K_{IS}^{c}$ / $K_{OS}K_{IS}^{d}$ / K_{OS}^{e} / Re l mol ⁻¹ s ⁻¹ s ⁻¹ s ⁻¹ l mol ⁻¹ l mol ⁻¹ l mol ⁻¹	eferences
	his wo rk
	his work
$CF_3CO_2^{-t}$ 1.37 - 0.50 2.4 2.7 - T	his work
Cl^{-} 0.69 - 1.75 0.48 0.4 - Ti	his work
Br^- 3.71 — 12.5 0.21 0.3 — The second se	his work
I 102 0.022)s TI	his work
$+NH_{3}CH_{2}CO_{2}-7\cdot82$ 14.2 0.55	2
HC_2CO_4 - 6.45 5.86 1.16	1
$C_2 O_4^{2-}$ 29.1 6.46 4.5	1
H_2O - 13.7	3

^a No dependence on $[H^+]$ observed. ^b $k_{an} = k_I/K_{08}$. ^c Obtained following ion-exchange separation (and determination) of components in equilibrated solutions. ^d From rate constants k_I/k_{aq} . ^e From kinetic treatment. ^t $[H^+]$ range 0.005—0.02M to avoid protonation of $CCl_3CO_2^-$ (p K_a 0.66) and $CF_3CO_2^-$ (p K_a 0.23). ^g Not included in log k_{aq} vs. log $K_{08}K_{18}$ plot since the small amount of the 2+ eluant was not positively identified as $[Cr(NH_9)_5I]^{2+}$ in ion exchange separation. The value here is consistent between with 0 log h we have K_{a} between 0.01 however with a log k_{aq} vs. log $K_{OS}K_{IS}$ plot of slope 0.91.

60 and is believed to support an associative mechanism, whereas values < 10 are believed to be more in keeping with a dissociative process. The value for $[Cr(NH_3)_5 H_2O^{3+}$ is 6.

It is possible to obtain values of k_{an} in those cases in which K_{0S} has been determined, $X^- = NCS^-$, $HC_2O_4^-$, $C_2O_4^{2-}$, and $+NH_3CH_2CO_2^{-}$. Values lie in a narrow range, $(5-14) \times 10^{-4} \,\mathrm{s}^{-1}$ at 50 °C, and are comparable to the rate constant for H₂O exchange $(13.7 \times 10^{-4} \text{ s}^{-1})$. From the data reported a linear relation of $\log k_{aq}$ against – \log $K_{08}K_{I8}$ of slope 0.91 \pm 0.05 is observed. A much smaller slope of $0{\cdot}56$ is observed for the corresponding plot for the $[Cr(H_2O)_5X]^{2+}$ series of reactions.⁷ These observations strongly suggest that breaking of the Cr-OH₂ bond is the dominant factor.

The assignment of a dissociative I_d process for $[Cr(NH_3)_5 H_2O^{3+}$ and an associative I_a mechanism for $[Cr(H_2O)_6]^{3+}$ lends support to the hypothesis that a metal ion may not be associated with a single type of mechanism in all ligand environments. With Com it is now established that $[Co(NH_3)_5H_2O]^{3+}$ and $[Co(CN)_5H_2O]^{2-}$ undergo I_d and Dsubstitutions, respectively.⁸ Rate constants for the anation

of $[Co(H_2O)_6]^{3+}$ with NCS⁻ (86.5 l mol⁻¹ s⁻¹)⁹ and Cl⁻ $(\leq 2.0 \ 1 \ \text{mol}^{-1} \ \text{s}^{-1})^{10}$ differ by a factor of ≥ 43 suggesting some associative character.

The present study indicates that $[Cr(H_2O)_6]^{3+}$ and $[Cr(NH_3)_5H_2O]^{3+}$ differ in their substitution properties. From a consideration of Cr-NH₃ and Cr-OH₂ bonds it might be expected that since oxygen is more electronegative than nitrogen the donation of electron density to the metal will be more favourable in the Cr-NH₃ bond as compared to $Cr-OH_2$. As π back-bonding is impossible in the two cases, the net electron density on CrIII should be higher for a pentaammine than for a penta-aquo environment. This is likely to reduce the susceptibility to an associative attack and will tend to favour dissociative processes. Langford and Sastri¹¹ have estimated that five NH₃ groups would be expected to labilise one H_2O ligand by a factor of 10^3 as compared to an environment of five H₂O ligands. It is not surprising that for such drastic labilizing effects, a change in mechanism is sometimes observed.

(Received, 22nd March 1976; Com. 299.)

- ¹ O. Nor and A. G. Sykes, J.C.S. Dalton, 1973, 1232.
- ² T. Ramasami, R. S. Taylor, and A. G. Sykes, Inorg. Chem., submitted.
- ¹ T. W. Swaddle and D. R. Stranks, J. Amer. Chem. Soc., 1972, 94, 8357. ⁴ J. H. Espenson, Inorg. Chem., 1969, 8, 1334; D. Thusius, Inorg. Chem., 1971, 10, 1106.

- ⁴ J. H. Espenson, Inorg. Chem., 1969, 8, 1334; D. Thusius, Inorg. Chem., 1971, 10, 1106.
 ⁵ E. Zinato, C. Furlani, G. Lanna, and P. Riccieri, Inorg. Chem., 1972, 11, 1746; G. Guastalla and T. W. Swaddle, Canad. J. Chem., 1974, 52, 527; T. Ramasami, R. K. Wharton, and A. G. Sykes, Inorg. Chem., 1975, 14, 359.
 ⁶ Y. Sasaki and A. G. Sykes, J.C.S. Dalton, 1975, 1048.
 ⁷ T. W. Swaddle and G. Guastalla, Inorg. Chem., 1968, 7, 1915.
 ⁸ A. Haim, Inorg. Chem., 1970, 9, 426; C. H. Langford and H. B. Gray 'Ligand Substitution Processes,' Benjamin, New York, 1961, 855; A. Haim, and W. K. Wilmarth, Inorg. Chem., 1962, 1, 573.
 ⁹ G. Davies and K. O. Watkins, J. Phys. Chem., 1970, 74, 3388.
 ¹⁰ A. McAuley, M. W. Malik, and J. Hill, J. Chem. Soc., (A), 1970, 2461.
 ¹¹ C. H. Langford and V. S. Sastri, 'MTP International Review of Science, Inorganic Chemistry Series 1,' Vol. 9, ed, M. L. Tobe, Butterworths. 1972, 203

Butterworths, 1972, 203.