Synthesis and Characterization of the μ -Disulphido Complexes CrS_2Cr^{4+} and CrS_2HFe^{4+}

By T. RAMASAMI, ROGER S. TAYLOR, and A. GEOFFREY SYKES*

(Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9]T)

Summary Novel chromium(III) complexes with μ -disulphido(S-S) bridging ligands have been prepared by I_2 and Fe^{III} oxidation of CrSH²⁺.

ADDITION Of I₂ (ca. 10^{-3} M, 50 ml) to mercaptopenta-aquochromium(111),[†] CrSH^{2+,1,2} (ca. $1\cdot50 \times 10^{-2}$ M, 25 ml) in non-complexing $0\cdot1$ MHClO₄- $0\cdot9$ M LiClO₄ (from ion-exchange separation), under air-free conditions, yields a yellow-brown complex (A). The latter was separated from excess of CrSH²⁺ using a Sephadex SP C25 column (18—20 cm long, $1\cdot8$ cm diameter, 0 °C) pre-equilibrated with $0\cdot10$ M HClO₄. The CrSH²⁺ band was eluted with $0\cdot2$ M HClO₄, and (A) with a solution of $0\cdot1$ M HClO₄ and $0\cdot9$ M LiClO₄.

Solutions of (A) were stored under N₂ and were characterized as follows. An aliquot portion $(1 \times 10^{-3}M, 50 \text{ ml})$ was mixed with NaOH (1M, 10 ml), and H₂O₂ (30%, 1 ml), and heated at 70 °C for 1 h. The chromate(v1) produced was determined spectrophotometrically at 372 nm (ϵ $4\cdot82 \times 10^3 \text{ l mol}^{-1} \text{ cm}^{-1}$), and the sulphate as BaSO₄ after first reducing Cr^{VI} to Cr^{III} with H₂O₂ under acidic conditions. The validity of the procedure was checked using solutions of S²⁻ and S₂²⁻ in the presence of chromium(III) and perchlorate. The ratio of S:Cr was found to be 0.96 $\pm 0.01:1$.

Procedures involving I_2 oxidation of S^{2-} to elemental sulphur have previously been used in the estimation of sulphur compounds.³ In this study I_2 was used to determine the number of redox equivalents of (A) (1.01 \pm 0.01 per Cr). It was also found that complex (A) is eluted more slowly than Cr³⁺ using Dowex cation-exchange resin, indicating a charge > 3. Accordingly (A) is formulated as the μ -disulphido-bis[penta-aquochromium(III)] complex, CrS₂Cr⁴⁺. The spectrum of (A) is shown in the Figure. The equation for formation can be expressed as in (1).

$$I_2 + 2 CrSH^{2+} \rightarrow CrS_2Cr^{4+} + 2H^+ + 2I^-$$
 (1)

On addition of Fe²⁺ (0.037M) to CrS_2Cr^{4+} (1.3 × 10⁻⁴M), $[H^+] = 0.10 - 0.55 M$, spectrophotometric changes (t_{i} ca. 10 min at 25 °C) are observed, with an isosbestic point at 376 nm, and the yellow-green complex (B) is formed (Figure). The same product is obtained in good yield, along with hexa-aquochromium(III), by hexa-aquoiron(III) oxidation of $CrSH^{2+}$, $[H^+] = 0.10-0.55M$. Separation using a Sephadex resin, followed by determination of the S: Cr ratio (1.98 + 0.10; 1) was as above. The Fe content (Cr: Fe ratio 0.94 ± 0.02 : 1) was determined by iodometric titration after exhaustive oxidation with HClO₄, HNO₃, and H_2SO_4 until no more SO_2 was evolved. The Fe^{III} and Cr^{VI} were titrated together, and the Cr^{VI} separately after the addition of ethylenediaminetetra-acetic acid and acetate buffer to complex the FeIII and thus prevent the oxidation of I^- to I_2 . The Cr^{VI} was also estimated spectrophotometrically. Redox equivalents of a solution of (B) were determined as before (0.98 \pm 0.03 per Cr), and the charge on the complex $(3\cdot 8)$ by the method of Cady and Connick.⁴ Complex (B) is accordingly formulated as CrS_2HFe^{4+} and the relevant equations are (2) and (3).

$$CrS_2Cr^{4+} + Fe^{2+} + H^+ \rightarrow CrS_2HFe^{4+} + Cr^{3+}$$
 (2)

 $2CrSH^{2+} + 2Fe^{3+} \rightarrow Cr^{3+} + CrS_2HFe^{4+} + Fe^{2+} + H^+$ (3)

† Elsewhere^{1,2} this complex has been referred to as thiolopenta-aquochromium(III).

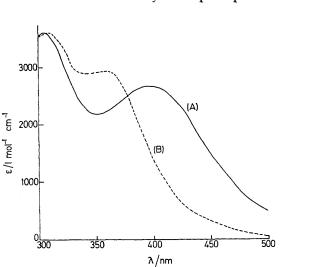

The CrSH²⁺ complex must be in excess in reaction (3), to avoid further oxidation of the S-ligand and precipitation of sulphur. The 1:1 stoicheiometry of reaction (3) was confirmed from a detailed analysis of spectrophotometric

FIGURE. Spectra of CrS_2Cr^{4+} (A) and CrS_2HFe^{4+} (B) $[H^+] =$ 0.1M. Absorption coefficients are per dimer unit.

¹M. Ardon and H. Taube, J. Amer. Chem. Soc., 1967, 89, 3661.

 ² T. Ramasami and A. G. Sykes, *Inorg. Chem.*, in the press.
³ E. Blasius, G. Horn, A. Knochel, J. Munch, and H. Wagner, 'Inorganic Sulphur Chemistry,' ed. G. Nickless, Elsevier, Amsterdam, 1968, p. 199. ⁴ H. H. Cady and R. E. Connick, J. Amer. Chem. Soc., 1958, 80, 2646.

⁵ E.g. 'Iron-Sulphur Proteins,' ed. Lovenberg, Academic Press, New York, Vols. I and II, 1973, and references therein.

changes. Ion-exchange separation and determination of the Cr³⁺ and Fe²⁺ products were also carried out using Dowex 50W-X8 resin.

Interesting features of reaction (2) are the displacement of Cr³⁺ by Fe²⁺ which is known to have a high affinity for S-ligands.⁵ Reaction (3) also gives as much as 20% of CrS_2Cr^{4+} at low [H+] (0.10M) which suggests that a radical mechanism is involved. Complex (B) is not formed via (A) in reaction (3). It is necessary to invoke protonation of the Cr-Fe binuclear complex to meet all the requirements of product analyses. Alternative structures with di-µ-sulphido or with non-bridging S_2^{2-} ligands are not consistent with the above findings (incorrect charge etc.).

From kinetic studies the rate law for reaction (2) takes the form of equation (4), where $k_1 = (3.16 \pm 0.05) \times 10^{-2}$

$$Rate = k_1[CrS_2Cr^{4+}][Fe^{2+}] + k_2[CrS_2Cr^{4+}]$$
(4)

 $1 \text{ mol}^{-1} \text{ s}^{-1}$ and $k_2 = (9.8 \pm 0.4) \times 10^{-5} \text{ s}^{-1}$ (both are independent of [H⁺]) at 25 °C, I = 1.0M (LiClO₄). The rate law for reaction (3) is as in equation (5), where at 25 $^{\circ}$ C,

$$Aate = k_3 [CrSH^{2+}] [Fe^{3+}] [H^+]^{-1}$$
(5)

 $k_3 = (1.50 \pm 0.02) \times 10^{-2} \, \text{l mol}^{-1} \, \text{s}^{-1}, \ I = 1.0 \,\text{m}$ (LiClO₄). The latter most likely involves a reaction of CrS+ with Fe³⁺.

(Received, 15th March 1976; Com. 269.)