Synthesis and Reactions of η-Cyclopentadienylhydridotris(trimethyl phosphite)chromium(11)

By JOHNSON D. KOOLA and HANS H. BRINTZINGER*

(Fachbereich Chemie der Universität Konstanz, 7750 Konstanz, West Germany)

Summary The synthesis and physical characteristics of a novel chromium hydride, $[(\eta - C_5H_5)Cr \{P(OMe)_3\}_3H]$, (I), are described; several reactions of this compound, including exchange of CH₃O-groups with CD₃O, P(OMe)₃ with CO and NO, and Cr-H with D₂ are reported.

TRANSITION metal hydrides stabilized by π -acceptor ligand molecules are of general interest as potential participants in homogeneous catalysis. We report an example of such a system containing the cpCr species (cp = η -cyclopentadienyl). When a tetrahydrofuran (THF) solution of cpCrCl₂·THF is treated with a 2—3-fold excess of NaBH₄, the presence of hydride species in the reaction product is indicated by mass spectrometry with peaks corresponding, among others, to cpCrH₂·THF and cpCr(BH₄)₂. While substances with defined composition could not be isolated from these reaction mixtures, a stable hydride complex, η -cyclopentadienylhydridotris(trimethyl phosphite)chromium(II) (I), is obtained as air-sensitive yellow flakes in almost quantitative yield, when this reaction is carried out in the presence of an excess of P(OMe)₃.

Compound (I) decomposes without melting above 160 °C. However, it can be sublimed under high vacum at 50—60 °C with partial decomposition. It is freely soluble in polar and non-polar organic solvents. In the absence of air, these solutions are reasonably stable. The deuterium analogue of (I) is prepared in the same way, using NaBD₄. The mass spectrum of (I), m/e 490 (M^+), 366 [cpCr {P(OMe)₃}₂-H]⁺, 365 [cpCr {P(OMe)₃}₂]⁺, 242 [cpCr {P(OMe)₃}H]⁺, and 241 [cpCrP(OMe)₃]⁺, is fully compatible with the proposed composition [cpCr {P(OMe)₃}₃H]; one of the phosphite ligands is more readily eliminated than the hydrogen bound to the metal. The ¹H n.m.r. spectrum of (I) shows the hydride proton as a symmetrical 1:3:3:1 quartet at τ 19.70 (J_{P-H} 75 Hz). This splitting undoubtedly arises from the three magnetically equivalent phosphorus atoms.

The cyclopentadienyl protons at τ 5.54 are similarly split into a quartet by the three phosphorus atoms $(J_{P-H} \ 1.5 \text{ Hz})$. The equivalence of the phosphorus atoms is confirmed by the ³¹P n.m.r. spectrum. In the proton-decoupled phosphorus spectrum only one singlet appears. For this signal, one observes a high-field shift compared to the uncomplexed ligand (co-ordination shift +31.15 p.p.m.); similar highfield co-ordination shifts have been reported earlier, particularly for co-ordination compounds containing metals in positive oxidation states.^{1,2} Without decoupling, the phosphorus resonance is split into a doublet with J_{P-H} 75 Hz, in accord with the splitting observed for the metal hydride. Splitting by the nine MeO protons is presumably hidden under a line width of 20-25 Hz. The MeO protons resonance appears as an irregular quartet³ with an apparent splitting of 3 Hz.

A trigonal bipyramidal arrangement of the ligands with the hydrogen atom trans to the cyclopentadienyl ring would be the only conceivable non-fluxional structure consistent with these spectral data, particularly with the observed equivalence of all three phosphorus atoms. Similar axial structures are known, in particular for [CoH(N)₂(PPh₃)₃]⁴ and $[{\rm RhH}({\rm CO})({\rm PPh}_3)_3].^5$ On the other hand, a non-axial structure with phosphite and hydride ligands at the base of an approximate square pyramid would be equally compatible with these spectral data, if a fast pseudorotation exchanges the phosphite groups cis and trans to the hydride ligand. Similar fluxional behaviour has been observed for the analogous complexes [CpW(CO)₃H]⁶ and [CpMo(CO)₂-PR₃H]⁷ by variable-temperature n.m.r. spectroscopy. In the case of (I), however, no significant changes in the n.m.r. spectra are observed at ca. -110 °C. We must therefore conclude that in all likelihood the observed equivalence of the three phosphite ligands is not due to a stereochemical non-rigidity, but rather due to their trigonally symmetric arrangement in (I).

Although M-H stretching vibrations are unique for complex metal hydrides, the i.r. spectrum of (I) shows no clearly defined absorption in the region $2500-1600 \text{ cm}^{-1}$ attributable to the Cr-H bond. Interestingly, a similar observation was reported for the related structures [cpCr-(CO)₃H]⁸ and [HCo(PX)₃)₄].^{9,10}

Upon treatment with CCl_4 , (I) is reconverted into cpCr-Cl₂·P(OMe)₃. Ligand exchange of (I) occurs with CO at 1 atm; after 3-4 days one obtains a near-quantitative yield of a monocarbonyl compound, [cpCr{P(OMe)₃}₂(CO)H], $\nu({\rm CO})$ 1840 cm^-1, m/e 394 (M+), τ 18.61 (1H, t, $J_{\rm P-H}$ 39 Hz, Cr-H). Reaction of (I) with a limited amount of NO yields, within 2 h, the nitrosyl complex $[cpCr{P(OR)_3}_2NO]$, identified by its ¹H n.m.r. spectrum with the expected C₅H₅ triplet and OMe signal (ratio 1:3.6), a strong i.r. band at 1625 cm⁻¹ ν (NO), and m/e 395 (M⁺). Excess of NO yields, as the sole product, an olive green sublimable material which was tentatively assigned the structure $[{cpCr(NO)_2}_3-$ H] on the basis of its spectroscopic data: m/e 532, ¹H n.m.r. spectrum with a single, sharp C_5H_5 signal, and $\nu(NO)$ 1705 and 1810 cm⁻¹.¹¹ Ligand exchange thus appears to be a fairly ready reaction mode for $[cpCr{P(OR)_3}_3H]$. Anion formation by proton abstraction from the M-H group could

not be observed with basic reagents such as NaNH, or Na alkoxides; instead, attack at the phosphite ligands appears to be preferred. Treatment with CD₃ONa in CD₃OD resulted in exchange of 1-9 MeO groups with CD₃O groups during 24 h, while little, if any, Cr-H was converted into Cr-D. Reaction with 1 mol. equiv. of methyl-lithium in THF gave [cpCr {P(OR)₃}₂PMe₃H] in small quantities.

In contrast to its inertness to basic reagents, a fairly ready exchange of the metal hydride with D₂ can be observed by mass spectrometry. When exposed to 1 atm of D₂ in light petroleum or THF solution for 4-8 days at room temperature, > 50% of the hydride is converted into $[cpCr{P(OMe)_{3}_{3}D]$. This reaction does not occur with $[(\eta - C_5 H_5)Mo(CO)_3 H]^{12}$ at room temperature. Presumably intermediate dissociation of a phosphite ligand to yield a co-ordinatively unsaturated intermediate capable of oxidative addition of D₂ occurs more easily than that of a CO ligand.

We acknowledge financial support from the Deutsche Forschungsgemeinschaft.

(Received, 15th March 1976; Com. 263.)

- S. I. Shupack and B. Wagner, Chem. Comm., 1966, 547.
 K. J. Coskran, R. D. Bertrand, and J. G. Verkade, J. Amer. Chem. Soc., 1967, 89, 4535.
- ³ G. Wright and R. J. Mawby, J. Organometallic Chem., 1973, 51, 281.
 ⁴ B. R. Davis, N. C. Payne, and J. A. Ibers, J. Amer. Chem. Soc., 1969, 91, 1240.
 ⁵ S. J. La Placa and J. A. Ibers, J. Amer. Chem. Soc., 1963, 85, 3501.
- ⁶ J. W. Faller, A. S. Anderson, and Chin-Chun Chen, Chem. Comm., 1969, 719.
- ⁷ J. W. Faller and A. S. Anderson, J. Amer. Chem. Soc., 1970, 92, 5852.
- ⁸ In the Mo and W analogues, however, the M-H vibrations are observable; see A. P. Ginsberg, Transition Metal Chem., 1965, 1, 182. ⁹ J. J. Levison and S. D. Robinson, J. Chem. Soc. (A), 1970, 96.
- ¹⁰ M. Rossi and A. Sacco, Chem. Comm., 1969, 471.

¹¹ Although only a non-distinct resonance is observed in the n.m.r. spectrum for the M-H proton, the presence of the hydride ligand is indicated both by the mass spectrum and by the diamagnetic character of $[{cpCr(NO)_2}_3H]$. This compound is distinct from a is indicated both by the mass spectrum and by the diamagnetic character of [{cpCr(NO)₂}₃H]. red-violet dimeric nitrosyl [cpCr(NO)₂]₂, prepared by R. B. King and M. B. Bisnette, Inorg. Chem., 1964, 3, 791, which exhibits v(NO) at 1505 and 1672 cm⁻¹.

¹² R. A. Schunn, Inorg. Chem., 1970, 9, 2567.