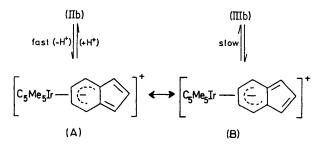

η° -Indene- and η° -Indole-(pentamethylcyclopentadienyl)-rhodium(III) and -iridium(III) Hexafluorophosphates and their Reversible Deprotonation and Rearrangement Reactions to n⁵-Indenyl- and n⁵-Indolyl-complexes

By Colin White, Stephen J. Thompson, and Peter M. Maitlis* (Department of Chemistry, The University, Sheffield S3 7HF)


Summary The preparations of $[M(\eta^5-C_5Me_5)(\eta^6-indene)]$ $(PF_{6})_{2}$, (II), $[M(\eta^{5}-C_{5}Me_{5})(\eta^{5}-indenyl)](PF_{6})$, (III), $[M(\eta^{5}-C_{5}Me_{5})(\eta^{5}-indenyl)](PF_{6})$, (III), (PF_{6})(\eta^{5}-indenyl)](PF_{6}), (III), (PF_{6})(\eta^{5}-indenyl)](PF_{6}), (III), (PF_{6})(\eta^{5}-indenyl) $C_5Me_5(\eta^{6}-indole)](PF_6)_2$ (M = Rh or Ir), and $[Ir(\eta^{5} C_5Me_5)(\eta^5-indolyl)]PF_6$ are reported; in the interconversion (III) + $H^+ \rightleftharpoons$ (II), for M = Ir protonationdeprotonation is fast and the rate-determining step is the movement of the metal from the 5- to the 6-membered ring and vice-versa.

THE dicationic pentamethylcyclopentadienyl-rhodium and -iridium acetone solvate complexes,¹ (I),[†] react with indene (in acetone at 20 °C) to give initially the η^{6} -indene

complexes, (II), in which the metal is complexed to the 6-membered ring. These complexes deprotonate and quantitatively rearrange in solution (instantaneously for M = Rh, over 24 h for M = Ir) to the η^{5} -indenyl complexes, (III), in which the metal is bound to the 5-membered ring.

The structures of (II) and (III) follow from their n.m.r. spectra and in particular from the ${}^{13}C{H}$ spectra of (IIa) and (IIIa) in which the $J(^{13}C^{-103}Rh)$ coupling constants indicate the mode of attachment (Table). The complexes (IIa) (90%) or (IIb) (66%) were generated on dissolving (IIIa) or (IIIb) in CF_3SO_3H , and the iridium complex (IIb) was also isolated as a solid.

Closely related reactions occurred between indole and (I) to give (IVa) or (IVb), identified by n.m.r. and i.r. spectroscopy $[v(NH) \text{ at } 3380 \text{ (IVa) and } 3395 \text{ (IVb) cm}^{-1}]$. In base the η^{6} -indole-iridium complex (IVb) underwent deprotonation accompanied by migration of the metal from the 6- to the 5-membered nitrogen-containing ring, (V), a reaction that was easily reversed on addition of CF₃CO₂H to a solution of (V). The rhodium complex (IVa) decomposed in the presence of base. Only one η^{6} -indole-² and one η^{5} -indolylcomplex³ had previously been reported.

When the η^{6} -indene-iridium complex (IIb) was dissolved in CF₃CO₂D the double-doublet δ 3.12, 3.64, J(H-1-H-1')26 Hz] in the ¹H n.m.r. spectrum due to H-l and H-l' collapsed to a singlet at δ 3.17. Since (IIIb) was not converted back into (IIb) in CF₃CO₂H during several days, this implies that the observed stereospecific H^+/D^+ exchange of H-1 (or H-1') in (IIb) does not occur through the intermediacy of (IIIb). Instead we propose that H⁺/D⁺

Compound	TABLE. ¹ H and ¹³ C {H} n.m.r. spectra (δ) [J (H-H) and J (C-Rh) in Hz in parentheses] Position										
	1/1′	2	3	3 a	4	5	6	7	7a	$C_{\pmb{5}}\mathrm{Me}_{\pmb{5}}$	$C_5 Me_5$
(IIa)° ¹ H	3·48d, 3·97d (26) (26)	$7 \cdot 05 d$ $(5 \cdot 5)$	7·79d (5·5)	_	7•50m	7·18m	7·18m	$7.50\mathrm{m}$			$2 \cdot 13$
(IIIa) ^b	(20) (20) 6.25d (3)	(5·5) 5·88m	6·25d (3)		7·55s						1.86
(IIa)° ¹³ C	3 9·6	a	138-2	129·3d (4·2)	101·1d (3·1)	104.1d (4.5)	105.2d (4.2)	102·7d (6·1)	125.7	112·4d (9·1)	10.1
(IIIa) ^b	82.6d (6.1)	90·9d (6·1)	82·6d (6·1)	94·7d (10·7)	129.6	123.6	123·0	1 29 •6	94·7d (10·7)	105·5d (9·1)	9.2
^a Not observed.	^b In [² H ₆]-acetor	ne. °In	CÈ ₃ SÓ ₃ E	Ľ. Ý					、 ,		

† The complexes (I) are obtained in situ by reaction of $[M(C_5Me_5)Cl_2]_2$ with AgPF₆ in acctone.

exchange occurs rapidly via an intermediate in which Ir is still bonded to the 6-membered ring (e.g. $A \leftrightarrow B$). An Ir^v hydride, $[HIr(C_5Me_5)(C_9H_7)]^{2+}$, may be an additional intermediate or transition state and analogous species have been proposed to explain the H/D exchange in the protonation of $Fe(\eta^{5}-indenyl)_{2}$.^{4,5}

We therefore conclude that in the rearrangement (III) \rightleftharpoons

(II) the protonation/deprotonation step is fast and that the movement of the metal from the 5- to the 6-membered ring and vice-versa is rate-determining.

We thank the S.R.C. for support and I.C.I. Ltd. for a grant towards the purchase of chemicals.

(Received, 17th March 1976; Com. 277.)

 ¹ S. J. Thompson, P. M. Bailey, C. White, and P. M. Maitlis, unpublished results.
² E. O. Fischer, H. A. Goodwin, C. G. Krater, H. D. Simmons, K. Sonogashira, and S. B. Wild, J. Organometallic Chem., 1968, 14, 359.
³ P. L. Pauson, A. R. Quazi, and B. W. Rockett, J. Organometallic Chem., 1967, 7, 325.
⁴ C. C. Lee, R. G. Sutherland, and B. J. Thomson, J.C.S. Chem. Comm., 1971, 1071.
⁵ P. M. Treichel and J. W. Johnson, J. Organometallic Chem., 1975, 88, 207; P. M. Treichel, J. W. Johnson, and J. C. Calabrese, *ibid.*, p. 215.