\boldsymbol{X}-Ray Crystal Structure of Tetraphenylporphinatoniobium Oxide Acetate; Demonstration of the Presence of Seven-co-ordinated Niobium

By Claude Lecomte and Jean Protas
(Laboratoire de Minéralogie et Cristallographie, Equipe de Recherche associée au C.N.R.S., no 162, Faculté des Sciences, Centre de 2ème Cycle, Case Officielle no 140, 54037 Nancy Cedex, France)
and Roger Guilard, Bernard Fliniaux, and Pierre Fournari*
(Laboratoive de Polarographie Organique associé au C.N.R.S., La 33, 6, Boulevard Gabriel, 21000 Dijon, France)

Summary The reaction of tetraphenylporphyrin with niobium pentachloride leads to a niobioporphyrin which, when treated with acetic acid, gives an acetate; an X-ray study shows that the metal is seven-co-ordinated in this acetate.

In their work on metalloporphyrins, Buchler et al. ${ }^{1}$ mention the possibility of seven-co-ordination of the metal, the three bonds which are not metal-nitrogen either all being on the same side of the porphyrin plane, or one bond being on the opposite side to the other two. We now report the synthesis and X-ray structure determination of the acetate (TPPNbO) $\mathrm{O}_{2} \mathrm{CMe}^{2}\left[(\mathrm{TTP}) \mathrm{H}_{2}=\right.$ tetraphenylporphyrin], the first metalloporphyrin for which seven-co-ordination has been demonstrated.

To a stirred solution of $\mathrm{NbCl}_{5}(30 \mathrm{mmol})$ in benzonitrile $(165 \mathrm{ml})$, (TTP) $\mathrm{H}_{2}(10 \mathrm{mmol})$ in the same solvent $(270 \mathrm{ml})$ was added dropwise, and the solution was heated under
reflux for 20 h . The mixture was then hydrolysed with 50 ml of water, extracted with CHCl_{3}, washed with water, and dried. Recrystallisation from benzene of the solid obtained gave red crystals (96%), elemental analysis for which corresponded to the formula $\mathrm{C}_{88} \mathrm{H}_{66} \mathrm{~N}_{8} \mathrm{Nb}_{2} \mathrm{O}_{3}$ [(TPPNbO) ${ }_{2} \mathrm{O}$]. Recrystallization from acetic acid rather than benzene gave purple crystals (92%), elemental analysis for which corresponded to the formula $\mathrm{C}_{46} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{NbO}_{3}$,$\mathrm{MeCO}_{2} \mathrm{H} \quad\left[(\mathrm{TPPNbO}) \mathrm{O}_{2} \mathrm{CMe}, \mathrm{MeCO}_{2} \mathrm{H}\right] ; \delta \quad\left(\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.20(\mathrm{~m}, \mathrm{Me}), 7.75(\mathrm{~m}, m$ - and $p-\mathrm{Ph}$ protons), $8.18(\mathrm{~m}, o-\mathrm{Ph}$ protons), and 9.50 (s , pyrrole-H).

The compound crystallizes in the triclinic system, space group Pㅍ. Crystal data: $a=16.64 \pm 0.02, b=11.33 \pm$ $0.01, c=11.57 \pm 0.01 \AA ; \alpha=105.9 \pm 0.2, \beta=100.5 \pm$ $0.2, \gamma=105 \cdot 1 \pm 0.2^{\circ}, Z=2, D_{\mathrm{c}}=1.25 \mathrm{~g} \mathrm{~cm}^{-3}$. Reflection intensities were recorded on a three-circle automatic diffractometer (CAD 3 Nonius) with $\mathrm{Cu}-K_{\alpha}$ radiation. The structure was solved by direct methods, using the MULTAN
programme. ${ }^{3}$ Block-diagonal least-squares refinement of all the atoms (including the solvent molecule leads to an R index of 0.06 for the 4038 non-zero reflections with

Figure. Structure of (TPPNbO) $\mathrm{O}_{2} \mathrm{CMe}, \mathrm{MeCO}_{2} \mathrm{H}$; the solvent molecule is not included.
$\sigma(I) / I<0 \cdot 20$. The Figure shows a perspective view of the complex; the niobium atom is seven-co-ordinated, and lies within a polyhedron of symmetry close to C_{s}, with
a square base defined by the four nitrogen atoms of the pyrrole rings and a triangular base, nearly parallel, defined by three oxygen atoms $\mathrm{O}(1), \mathrm{O}(2)$, and $\mathrm{O}(3)$. The angle between the mean planes of these two bases is $1 \cdot 1^{\circ}$; the metal is $1.0 \AA$ out of the mean plane of the four nitrogen atoms and $1.35 \AA$ out of the plane of the three oxygen atoms.

The acetate group is bonded to niobium through $O(2)$ and $\mathrm{O}(3)$, which are exactly equidistant from the metal: $\mathrm{Nb}-\mathrm{O}(2) 2 \cdot 223(6)$ and $\mathrm{Nb}-\mathrm{O}(3) 2 \cdot 225(6) \AA$. The $\mathrm{Nb}-\mathrm{O}(1)$ ($1.716 \AA$) bond has the characteristics of a double bond. Significant differences are observed between the $\mathrm{Nb}-\mathrm{N}$ distances: $\mathrm{Nb}-\mathrm{N}(22)$ and $\mathrm{Nb}-\mathrm{N}(24)$ [respectively $2 \cdot 252(7)$ and $2 \cdot 319(7) \AA$] are comparable to those already reported; 4 in contrast, $\mathrm{Nb}-\mathrm{N}(21)$ and $\mathrm{Nb}-\mathrm{N}(23)$ [respectively $2 \cdot 173(7)$ and $2 \cdot 187(7) \AA$] are much shorter. This difference can be related to the nitrogen-oxygen distances, $\mathrm{N}(22)-\mathrm{O}(1)$ is $2 \cdot 65(1) \AA$ whereas $\mathrm{N}(24)-\mathrm{O}(2)$ and $\mathrm{N}(24)-\mathrm{O}(3)$ are $2 \cdot 77(1) \AA$. Steric hindrance is thus important and causes a lengthening of the $\mathrm{Nb}-\mathrm{N}(22)$ and $\mathrm{Nb}-\mathrm{N}(24)$ bonds.

The most important Nb -ligand bond angles are: $\mathrm{N}(21)-$ $\mathrm{Nb}-\mathrm{N}(22) \quad 79 \cdot 0(2) ; \mathrm{N}(22)-\mathrm{Nb}-\mathrm{N}(23) \quad 78 \cdot 0(2) ; \mathrm{N}(23)-\mathrm{Nb}-$ $\mathrm{N}(24) \quad 78 \cdot 5(2) ; \quad \mathrm{N}(24)-\mathrm{Nb}-\mathrm{N}(21) \quad 79 \cdot 0(2) ; \quad \mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(3)$ $85 \cdot 5(3) ; \mathrm{O}(1)-\mathrm{Nb}-\mathrm{O}(2) 83 \cdot 2(3)$; and $\mathrm{O}(2)-\mathrm{Nb}-\mathrm{O}(3) 58 \cdot 5(2)^{\circ}$. The phenyl groups are planar and the angles between the mean plane of the four nitrogen atoms and the rings comprising $\mathrm{C}(25)-\mathrm{C}(30), \mathrm{C}(31)-\mathrm{C}(36), \mathrm{C}(37)-\mathrm{C}(42)$, and $\mathrm{C}(43)-\mathrm{C}(48)$ are respectively $60 \cdot 3,63 \cdot 5,70 \cdot 7$, and $72 \cdot 2^{\circ}$. The phenyl groups are bonded to the macrocycle by single bonds whose mean length is $1.503 \AA$.
(Received, 8th March 1976; Com. 231.)

[^0]
[^0]: ${ }^{1}$ J. W. Buchler and K. Rohbock, Inorg. Nuclear Chem. Letters, 1972, 8, 1073; J. W. Buchler, L. Puppe, K. Rohbock, and H. H. Schneehage, Ann. N.Y. Acad. Sci., 1973, 206, 116; M. Gouterman, L. K. Hanson, G. E. Khalil, J. W. Buchler, K. Rohbock, and D. Dolphin, J. Amer. Chem. Soc., 1975, 97, 3142.
 ${ }^{2}$ R. Guilard, B. Fliniaux, B. Maume, and P. Fournari, Compt. rend. (C), 1975, 281, 461.
 ${ }^{3}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1970, B26, 274.
 ${ }^{4}$ G. Chavant, G. Constant, Y. Jeannin, and R. Morancho, Acta Cryst., 1975, B31, 1823; C. Chavant, J. C. Paran, Y. Jeannin, G. Constant, and R. Morancho, ibid., p. 1825.

