X-Ray Crystal Structure of the 1:2 Adduct of Aluminium Trichloride with Acetonitrile; an Interesting Example of Auto-complex Formation

By JUDITH A. K. HOWARD and LESLEY E. SMART* (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

and Christopher J. Gilmore

(Department of Chemistry, The University, Glasgow G12 8QQ)

Summary Single crystal X-ray studies have shown that the co-ordination complex of aluminium trichloride with acetonitrile of stoicheiometry $AlCl_3-2MeCN$ has the ionic structure $[AlCl(MeCN)_5]^{2+}[AlCl_4]_2^{-}$ and contains one molecule of solvent acetonitrile per asymmetric unit.

MANY attempts have been made to establish the nature of the stable molecular addition compounds in the $AlCl_3$ -MeCN system, and to characterize the species present in solution. Schmulbach,¹ from a phase study, reports the presence of three stable complexes with empirical formulae $AlCl_3 \cdot 2MeCN$, $2AlCl_3 \cdot 3MeCN$, and $AlCl_3 \cdot MeCN$.

Solutions of AlCl₃ in MeCN are highly conducting, indicating the presence of ionic species,²⁻⁴ and both Raman and n.m.r. experiments suggest that the anionic species present is AlCl₄^{-.1,3-7} The n.m.r. solution studies⁵⁻⁷ have been taken to indicate the presence of only the 1:1.5 adduct, the most likely ionic species present being $[Al(MeCN)_6]^{3+}$ - $[AlCl_4]^{-3}$. The identification of the cationic species in the 1:2 adduct has proved very difficult and controversial. To account for the stoicheiometry various structures have been proposed, for example: $[Al_2Cl_5.6MeCN]^+[AlCl_4]^{-3+}$ $[AlCl_2(MeCN)_4]^+[AlCl_4]^{-2}$ and $[Al(MeCN)_6]^{3+}[AlCl_4]^{-3-}$ ·2MeCN.⁸

Jones and Wood⁸ note from their i.r. measurements that there appears to be unco-ordinated MeCN in the unit cell. A single crystal X-ray structure determination of the 1:2adduct appeared to be the only unequivocal way of deciding the structure of the solid, and possibly of helping to understand the solution behaviour.

Crystal data: $C_{12}H_{18}Al_3Cl_9N_6$, orthorhombic, space group $P2_12_12_1$; Z = 4, a = 10.121(6), b = 14.562(12), c = 21.055-

(13) Å, R = 0.066 for 2355 independent reflections (Syntex- $P2_1$ four-circle diffractometer) refined by full-matrix least squares from a direct methods solution of the structure.

FIGURE. A view of the contents of the unit cell projected on the b c plane, viewed along the -x axis towards the origin.

The crystal (Figure; unit cell contents) contains discrete $[AlCl_4]^-$ and $[ClAl(MeCN)_5]^{2+}$ ions together with one uncoordinated solvent molecule (MeCN) per asymmetric unit.

The [AlCl₄]⁻ tetrahedra show a mean Al-Cl distance of 2.118(7) Å and \angle Cl-Al-Cl in the range $107.7(3)-112.5(3)^{\circ}$, whereas the Al–Cl distance in the octahedral ion is $2 \cdot 197(5)$ Å. The mean parameters for the equatorial acetonitriles in this latter ion are Al-N, 1.983(11); N-C, 1.149(17); and C-C, 1.468(21) Å; but the MeCN trans to the chlorine atom gives Al-N, 2.042(10); N-C, 1.105(16); and C-C, 1.483(20) Å. The [ClAl(MeCN)₅]²⁺ ion deviates considerably from regular octahedral symmetry with the average /Cl-Al-N (equa-

- ¹ C. D. Schmulbach, J. Inorg. Nuclear Chem., 1964, 26, 745. ² M. Graulier, Comp. rend., 1958, 247, 2139.

- ³ W. Libus and D. Puchaska, J. Phys. Chem., 1967, 71, 3549.
 ⁴ C. D. Schmulbach and I. Y. Ahmed, J. Chem. Soc. (A), 1968, 3008.
- ⁶ H. Haraguchi and S. Fujiwara, J. Phys. Chem., 1969, **73**, 3467.
 ⁶ J. F. Hon, Mol. Phys., 1968, **15**, 57.
 ⁷ J. F. O'Brien and M. Alei, J. Phys. Chem., 1970, **74**, 743.
 ⁸ D. E. H. Jones and J. L. Wood, J. Chem. Soc. (A), 1971, 3135.

torial) being $94.3(3)^{\circ}$ and \angle Cl-Al-N (trans) $177.7(3)^{\circ}$. The solvent acetonitrile molecule [N-C, 1.16(2) and C-C, 1.46(2) Å] has no contact distance shorter than 3.09 Å.

We thank Dr. M. Webster for supplying the sample, Dr. P. Woodward for helpful discussion, and the S.R.C. for a Fellowship to (L.E.S.).

(Received, 25th March 1976; Com. 310.)