Journal of

The Chemical Society,

Chemical Communications

NUMBER 13/1976

Transition Metal Complexes Containing the Bis(trifluoromethyl)nitroxy Ligand

By BRIAN L. BOOTH, ROBERT N. HASZELDINE,* and ROBERT G. G. HOLMES (Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD)

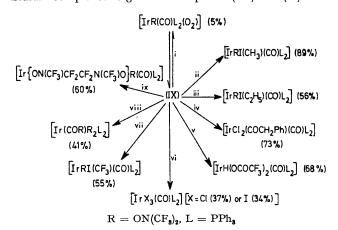
Summary Stable Ir^{III} and Pt^{II} complexes containing the ligand $(CF_3)_2NO$ have been obtained by oxidative addition of the radical $(CF_3)_2NO$ to Ir^I and Pt⁰ compounds and by metathetical chlorine atom exchange using Hg[ON(CF_3)_2]_2; $(CF_3)_2NONa$ reacts with the cations $[M(CO)(MeCN)(PPh_3)_2]^+$ (M = Rh or Ir) to afford the Ir^I and Rh^I complexes $[M(CO) \{(CF_3)_2NO\}(PPh_3)_2]$, and with the Pt^{II} cations $[PtX(CO)L_2]^+$ (X = Cl, Br; L = PPh_3: X = Cl, L = AsPh_3) to give the compounds of type $[PtX \{CO \cdot ON(CF_3)_2\}L_2]$.

ALTHOUGH bis(trifluoromethyl)nitroxy derivatives of main group elements may often be prepared by reaction of the radical $(CF_3)_2NO\cdot$,¹ very little information is available about derivatives of the transition metals, apart from a report of an unstable cobalt(II) species, $[Co \{ON(CF_3)_2\}_2]$,² and a communication on the manganese(I) complex $[(CF_3)_2-NOMn(CO)_5]$ formed by reaction of the radical with $[HMn-(CO)_5]$.³ In our hands this last reaction has always resulted in a mixture of the reported complex and $[Mn_2(CO)_{10}]$, and we have not yet succeeded in obtaining a pure sample. Thermally- and air-stable IrI, IrIII, RhI, and PtII derivatives of the $(CF_3)_2NO$ ligand have now been prepared by the methods outlined in Scheme 1, doubtless applicable to the preparation of $(CF_3)_2NO$ derivatives of other transition metals.

Oxidative addition of $(CF_3)_2NO$ occurs readily at room temperature in benzene or carbon tetrachloride to give the complexes (I)—(III) as white, crystalline solids with $\nu(CO)$ bands typical of Ir^{III} complexes (see Table), and strong bands at 1260, 1150, and 950 cm⁻¹ for $\nu(C-F)$; the $(CF_3)_2NO$ ligand also gives a singlet at *ca*. 10 p.p.m. to low field of CF_3CO_2H in the ¹⁹F n.m.r. spectra (CDCl₃ solution). The ¹H n.m.r. spectrum of compound (III) shows an apparent triplet centred at τ 7·28 (apparent J_{P-H} 5·9 Hz), establishing Oxidative addition

SCHEME 1. Preparative methods for bis(trifluoromethyl) nitroxy compounds.

that the two phosphine ligands remain *trans* in this compound, and presumably in the other compounds, although the stereochemistry of the remaining ligands cannot be unambiguously assigned. The white crystalline Pt^{II} complex (IV) has been fully characterised by i.r. and ¹⁹F n.m.r. spectroscopy, but its stereochemistry has not yet been established. These examples of radical additions to lowvalent iridium and platinum complexes substantiate recent observations⁴ that a free-radical oxidative addition mechanism can occur readily, and can often be preferred to alternative mechanisms.


TABLE

	$(CF_{2})_{2}$	NO de	rivatives	of transition met	tals
Compou	und ^a	2	/ield/%	M.p. (decomp.) /°C	ν (M–CO) /cm ⁻¹
(I) ·CCl₄			50	170 ^b	2052
ίΠ)			44	1505 ^b	2058
(III)		••	49	140 ^b	2058
(IV)			54	175—177 ^b	
(V)			48	148—152 ^b	
(VI)			47	196°	
(VII)·CH ₂ Cl ₂			66	180°	
(VIII)		••	36	142°	
(IX) · tetrahydrofuran 70			70	190—200 ^b	1957
$(X) \cdot 0 \cdot 5CH$	[2Cl2	••	51	160	1960

^a Satisfactory analysis obtained; the crystals sometimes con-tained solvent of crystallisation. ^b Decomposition point before ^c Decomposition on melting. melting.

Use of the mercurial $[(CF_3)_2NO]_2Hg$ in CFCl₃ solutions in the metathetical halogen exchange readily yields the triphenylarsine compound (V), and although the similar reaction with [PdCl₂(PPh₃)₂] results only in decomposition, preliminary investigations have shown that other PtII complexes and a Au^I complex can be prepared, suggesting that the method may have wider application for the synthesis of other (CF₃)₂NO derivatives of transition metals. It is not known whether these reactions involve oxidative addition followed by reductive elimination of a mercury(II) halide, or a four-centre exchange reaction as suggested for main group halides.5

The sodium salt of bis(trifluoromethyl)hydroxylamine, (CF_a)₂NONa,⁶ reacts only with the most reactive metal carbonyl cations, in which the CO ligand has a high electrophilic character,7 to afford the novel derivatives (VI)-(VIII), characterised by the disappearance in the i.r. spectrum of the metal carbonyl stretching vibration and the appearance of a new carbonyl absorption in the region of 1707-1709 cm⁻¹; their ¹⁹F n.m.r. spectra (CDCl_a solution) show a singlet in the range 24.1-24.8 p.p.m. downfield from CF₃CO₂H for the (CF₃)₂NO group, compared with 11.70 and 11.75 p.p.m. for the Pt^{II} derivatives (IV) and (V) respectively. The sodium salt does not cause halide ion displacement from compounds such as [IrCl(CO)(PPh₃)₂] or [RhCl(PPh₃)₃], or halogen-bridge cleavage reactions with, for example, [{PtCl(PPh₃)₂}₂][BF₄]₂, but it will displace weakly co-ordinated ligands from ionic rhodium and iridium complexes to give the complexes (IX) and (X).

 $CF_{3} \cdot N(\dot{O}) CF_{2} \cdot CF_{2} \cdot N(\dot{O}) \cdot CF_{3}$

The iridium complex (IX) undergoes oxidative addition reactions (Scheme 2); halogens or acyl halides result in replacement of the (CF₃)₂NO ligand, whereas the reaction with an excess of (CF₃)₂NO· results in an interesting CO 'insertion' reaction which warrants further investigation.

We thank the S.R.C. for a research studentship (to R.G.G.H.).

(Received, 3rd October 1976; Com. 1133.)

¹ P. M. Spaziante, *M.T.P. Int. Rev. Sci., Inorg. Chem., Ser.* 1, 1972, 3, 41; D. P. Babb and J. M. Shreeve, *Interscience Chem. Report*, 1971, 55; H. J. Emeléus, *Rec. Chem. Prog.*, 1971, 32, 135. ² H. J. Emeléus, P. M. Spaziante, and S. M. Williamson, *J. Inorg. Nuclear Chem.*, 1970, 32, 3219.

⁸ H. G. Ang, Chem. Comm., 1968, 1320.

A. Fusi, R. Ugo, F. Fox, A. Pasini, and S. Cenini, J. Organometallic Chem., 1971, 26, 417; J. S. Bradley, D. E. Connor, D. Dolphin, J. A. Labinger, and J. A. Osbourne, J. Amer. Chem. Soc., 1972, 94, 4043; M. F. Lappert and P. W. Lednor, J.C.S. Chem. Comm., 1973, 948.

⁵ H. J. Emeléus, J. M. Shreeve, and P. M. Spaziante, J. Chem. Soc. (A), 1969, 431; C. S. Wang and J. M. Shreeve, Inorg. Chem., 1973, 12, 81; H. J. Emeléus, P. M. Spaziante, and J. M. Shreeve, Chem. Comm., 1968, 1251. ⁶ R. E. Banks, R. N. Haszeldine, and D. L. Hyde, Chem. Comm., 1967, 413.

⁷ H. C. Clarke, K. R. Dixon, and W. J. Jacobs, J. Amer. Chem. Soc., 1969, 91, 1346; R. J. Angelici, Accounts Chem. Res., 1972, 5, 335.