The Methyl Fluoride—Antimony Pentafluoride Complex

By JEAN-YVES CALVES and RONALD J. GILLESPIE*

(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary It is shown by ¹⁹F and ¹H n.m.r. spectroscopy that the complex MeF-SbF₅ does not exist in solution in SO₂, as the solvent is methylated with the formation of CH₃OSO⁺, but it can be obtained in SO₂F₂ as a stable species which undergoes neither intramolecular nor intermolecular exchange on the n.m.r. time scale.

The formation of a MeF-SbF₅ complex has been postulated to explain the strong methylating ability of solutions of MeF-SbF₅ in SO₂ and SO₂ClF.¹ However, the ¹H n.m.r. spectra of such solutions showed only a singlet that could be attributed to a deshielded methyl group and no protonfluorine coupling. In order to explain the absence of this coupling a rapid intramolecular fluorine exchange in the MeF-SbF₅ complex was proposed. A later investigation of the ¹⁹F n.m.r. spectra of these solutions² showed the presence of the SbF₆⁻ and Sb₂F₁₁⁻ ions and the formation of the fluxional molecules MeSbF₆ and MeSb₂F₁₁ was proposed to account for these spectra and the absence of H-F coupling.

We have now reinvestigated solutions of MeF and SbF₅ in SO₂, SO₂F₂, and other solvents. The ¹⁹F n.m.r. spectrum of a solution of SbF₅ and excess of MeF in SO₂F₂ is given in the Figure. The ¹H n.m.r. spectrum of the same solution at -90 °C showed simply a deshielded doublet (δ 5·80; *J* 41 Hz) in addition to the doublet (δ 4·50; *J* 46 Hz) due to the excess of MeF. The magnitude of this splitting strongly suggests proton-fluorine coupling and the ¹⁹F spectrum is completely consistent with the formation of the simple donor-acceptor complex (I). Thus, in addition to the solvent peak and the quartet signal due to excess of MeF the ¹⁹F spectrum, at -145 °C, consists of a double doublet attributed to the four fluorine atoms F_e coupled to F_a (*J* 94 Hz) and to F_b (*J* 48 Hz), a quintet due to F_a coupled to the four atoms F_e (*J* 94 Hz), and a complex spectrum due to F_b. The latter in principle consists of a quartet of quintets due to coupling with the four atoms \mathbf{F}_{e} and the three protons which, because of the similarity of the two coupling constants [J (F_b-H) 41 Hz; J (F_b-F_e) 48 Hz], is complex and not fully resolved. The coupling

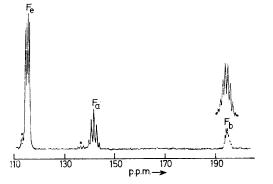
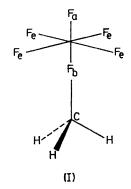



FIGURE. The ¹⁹F n.m.r. spectrum (at -145 °C) (F-on-Sb region only) of a solution of MeF-SbF₅ in SO_2F_2 (reference: CFCl₃). * Sb_2F_{11} -.

between F_a and F_b appears to be negligible as is also the case for the similar fluorine atoms in Sb_2F_{11} . In the ¹H spectrum two doublets are observed, one due to free MeF (δ 4.50; J 46 Hz) and the other to the complexed MeF (δ 5.80; J 41 Hz). At -80 °C there is no exchange between free and complexed MeF. In addition a very weak spectrum due to $Sb_2F_{11}^-$ was observed.

In contrast in SO₂ as solvent the ¹⁹F n.m.r. spectrum shows only the lines due to Sb_2F_{11} plus that of excess of MeF if it is present and the spectrum of the MeF-SbF₅ complex is not observed. Peterson³ has recently given evidence that in solution in SO₂FCl the ion MeOSO+ is

formed by the reaction of an SbF_5 -MeF mixture with SO_2 . We have recently obtained a white crystalline material from a solution of MeF and SbF_5 in SO₂ which has been shown by an X-ray crystallographic examination of its structure,⁴ to be the salt $MeOSO+Sb_2F_{11}$. The absence of proton-fluorine coupling is thus quite understandable as the MeF is converted quantitatively into the MeOSO+ ion.

In conclusion it may be stated that solutions of SbF₅ and MeF in SO₂ do not contain the MeF-SbF₅ complex as previously supposed. This complex, if formed initially, rapidly and quantitatively methylates the solvent to give the MeOSO+ cation. However SO₂F₂ is not methylated and the complex MeF-SbF₅ may be obtained in this solvent as a stable species which does not undergo either intramolecular fluorine exchange at low temperature as previously supposed or intermolecular exchange with excess of MeF.

(Received, 26th April 1976; Com. 455.)

¹G. A. Olah, J. R. De Member, and R. H. Schlosberg, J. Amer. Chem. Soc., 1969, 91, 2112; G. A. Olah, J. R. De Member, R. H. Schlosberg, and Y. Halpern, *ibid.*, 1972, 94, 156.
² J. Bacon and R. J. Gillespie, J. Amer. Chem. Soc., 1971, 93, 6914.
³ P. E. Peterson, personal communication.
⁴ R. J. Gillespie, F. G. Riddell, and D. R. Slim, to be published.