X-Ray Molecular Structure and Absolute Configuration of the Ring Nitrogen Atoms in (-)-1R,2S-1-(S)- α-Phenylethylcarbamoyl-2-methyl-3,3pentamethylenediaziridine

By Oleg A. Dyachenko,* Lev O. Atovmyan, Sergei M. Aldoshin, Alexander E. Polyakov, and Ramir G. Kostyanovskil
(Chemical Physics Institute of the Academy of Sciences, Chernogolovka, U.S.S.R.)

Summary The ring nitrogen atoms in (-)-1R,2S-1-(S)- $\alpha-$ phenylethylcarbamoyl-2-methyl-3,3-pentamethylenediaziridine (I) were found to have the $1 R, 2 S$ configuration; the pyramidal geometry of an amide nitrogen, $N(1)$ in the ring is shown to be essentially identical with that of $N(2)$.

Recently a series of previously unreported chiral diaziridines have been prepared. ${ }^{1}$ We have now established the absolute configuration of (I) and confirmed an amide conjugation relaxation effect on nitrogen inclusion into a three-membered ring. ${ }^{2}$

The preparation of compound (I) has already been described, ${ }^{1}$ m.p. $92-93{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}=-62 \cdot 4^{\circ}(c 1 \cdot 2$ in EtOH). Crystal data: $\mathrm{C}_{16} \mathrm{~N}_{3} \mathrm{OH}_{23}, M=273 \cdot 38$, monoclinic, $a=$ $8.650(3), b=11 \cdot 200(4), c=9.584$ (3) $\AA, \gamma=119^{\circ} 39^{\prime}(3)$, $U=806.9 \AA^{3}, \quad D_{\mathrm{c}}=1 \cdot 12 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=2$, space group $P 2_{1}$. Intensities of 957 independent non-zero reflections $h k 0-h k 8$ were measured on a DAR-UM automatic X-ray diffractometer with graphite-monochromated $\mathrm{Cu}-K_{\alpha}$ radiation by the layer registration technique. Absorption corrections were not applied.

The structure was solved by the multivariant phase method 3 using the tangent formula of Karle and Hauptman, and refined by full-matrix least-squares with anisotropic temperature factors to an R value of 0.074 . The absolute configuration and structural parameters are shown in the Figure. It is of interest that the pyramidal geometry of the ring amide nitrogen $\mathrm{N}(1)$ is practically analogous to that of $\mathrm{N}(2)$; the $\mathrm{C}(8)-\mathrm{N}(1)$ bond forms an angle of $59 \cdot 0^{\circ}$ with the plane of the $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(1)$ ring, while the corresponding angle of the $\mathrm{C}(7)-\mathrm{N}(2)$ bond is $60 \cdot 3^{\circ}$. The amide fragment of the substituent $\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{O}-\mathrm{N}(3)-\mathrm{C}(9)$ is practically planar forming angles of 116.4° and 135.8° with the $N(1)-$
$\mathrm{N}(2)-\mathrm{C}(1)$ and $\mathrm{C}(11)-\mathrm{C}(12) \ldots \mathrm{C}(16)$ planes, resepctively, and 31.4 with the $\mathrm{C}(9)-\mathrm{C}(10)$ bond. The $1 R, 2 S$-configuration of the cyclic nitrogen atoms in (I) was established with

respect to a known S-configuration of the $\mathrm{C}(9)$ centre (Figure). Hence the $1 R, 2 R$ configuration can be assigned to the nitrogen atoms in $(+)$-1-methyl-3,3-pentamethylenediaziridine.

We thank Mrs. A. A. Serebryakova for assistance.
(Received, 11th September 1975; Com. 1037.)

[^0]
[^0]: ${ }^{1}$ R. G. Kostyanovskii, A. E. Polyakov, and V. I. Markov, Izvest. Akad. Nautk S.S.S.R., Ser. Khim., 1974, 1847; 1975, 198, Dokl. Akad. Nauk S.S.S.R., 1974, 219, 873.
 ${ }_{2}$ T. Z. Papoyan, I. I. Chervin, and R. G. Kostyanovskii, Izvest. Akad. Nauk S.S.S.R., Ser. Khim., 1968, 1530; R. G. Kostyanovskii, K. S. Zakharov, M. Zaripova, and V. F. Rudchenko, ibid., 1975, 875; Tetrahedron Letters, 1974, 4207.
 ${ }^{3}$ V. I. Andrianov, Z.Sh. Safina, and B. L. Tarnopol'skii, Zhur. strukt. Khim., 1974, 15, 911.

