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Intermolecular and Intramolecular Alkylation of Mono- and Di-anions
Derived from a g-Ketosulphone

By Frank CookE and PHILIP MAGNUS*
(Department of Chemistry, Evans Chemistry Labovatory, The Ohio State University, Columbus, Ohio 43210)

Summary Alkylation of the 1,3-dianion of the SB-keto-
sulphone (1) with 1,3-dibromopropane gave (3) which
under appropriate conditions can be converted into either
(6; C-alkylation) or (7; O-alkylation) without contamina-
tion with the other C- or O-alkylated isomer.

‘WuiLst the 1,3-dianions of ﬁ-dicarbonyl compounds,®
B-ketophosphonates,? and B-ketosulphoxides® have been
extensively studied, the 1,3-dianion derived from a B—keto—
sulphone has received scant attention.* We were interested
in the 1,3-dianions of B-ketosulphones as intermediates in
the construction of carbocyclic systems for the synthesis of
certain natural products.t

Treatment of methyl phenyl sulphone carbanion (NaH-
THF) with ethyl phenylacetate gave the B-ketosulphone
(1).5 Lithium di-isopropylamide (2 equiv.) [or NaH (1
equiv.) followed by BuBLi (1 equiv.) at —70 °C] in glyme
at —55 °C reacted with the sulphone (1) to give a species
formulated as (2). When the 1,3-dianion (2) was quenched
at —40 °C with 1,3-dibromopropane the alkylated product
(3) was rapidly formed (60-—75%). In contrast, treatment
of (1) with NaH (1 equiv) in glyme, followed by 1,3-di-
bromopropane, gave the enol-ether (5); no other products
were detected. The mono-anion of (1) is pale yellow and
the dianion (2) is crimson. If the initial monoanion (5),
M = Na), from quenching (2) with 1,3-dibromopropane, is
allowed to warm to room temperature several compounds
are formed and the C- and O-alkylated products (6)} and

TABLE

Cyclisation of (3) to (6) and (7)

Products (approxi-

mate % yields or
proportions)

(6) (902); (7) (10%)
(7) (95%)
(7) (95%)

Reagents and conditions®
(a) NaH(1-5equiv.), dry Me,SO, 24 °C
(b) NaH (1-0 equiv.), dry DME or
HMPA, 40—50 °C
(¢)  Alumina ‘Woelm neutral’ Gl in
toluene, R.T.
KOBut (1 equiv.) in ButOH,
(d 50—60 °C
) Y NaOBut or LiOBut (1 equiv.)
in BtOH-THF
Sat. aqueous Na,CO,, Me,CO,
25 °C
109, aqueous NaOH, toluene,
28 °C

(6) (70%2); (7) (30%)

(6) (802); (7) (20%%)
10 % aqueous NaOH,DMF, 25 °C
Sat. aqueous Li,CO,;, DMF, 25 °C
289, NH,OH, THF, R.T.
(f) Nal-Li,CO;, aqueous Me,SO
(g) Thallium ethoxide—glyme, reflux
(h)  LiNPri, (1 equiv), glyme,
—53to 0°C (6) (90%)

a DME = 1,2-dimethoxyethane; HMPA = hexamethylphos-
phoric triamide; THF = tetrahydrofuran; DMF = dimethyl-
formamide; glyme == methoxymethyl methyl ether; R.T. =
room temperature.

(6) (6094); (7) (40%7)
(7) (907%)

(7)§ respectively can be detected, whereas treatment of the
monoanion (5, M = Li) at —40 °C with 1 equiv. further of
LiNPrl, and warming to room temperature gave (6); no

t Details of this work and the use of sulphones as nucleophilic acylating reagents will be reported elsewhere.

1 Attempts to prepare an authentic sample of (6) via 2-phenylcyclohexanone-LiNPr,'-(PhS), and oxidation with m-chloroperoxy-

benzoic acid gave the isomer 2-phenyl-2-(phenylsulphonyl)cyclohexanone as the only isolable product.

confirmed by reduction (Al-Hg) to 2-phenylcyclohexanone.

The structure of (6) was

§ Presumably (7) arises from its exocyclic double isomer which would be expected to isomerize to the thermodynamically more

stable endocyclic isomer (7).



520

O-alkylation product was detected. The sulphone (3) was
treated with a variety of reagents to examine its intra-
molecular alkylation to either (6) or (7); the results are given
in the Table.

Some of the results in the Table are unexpected.® Entry
(b) is in keeping with currently accepted views that alkyla-

resonance structures

¢ Br
Ph 50,Ph Ph/Y\SO Ph 2M*
Y 0
0
(1) (2) (M=Li or Na) (3)
SO,Ph
Ph Br
0 Ph SO,Ph Ph S0,Ph
m* o
(4) 0
{5) (M=Li or Na) (6)
Ph ° Ph or
SO,Ph
la)
(7) resonance structures resonance structures
(8)

9] This reagent system would be expected to parallel entry (b).
1 T. M. Harris and C. M. Harris, Org. Reactions, 1969, 17, 155.
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tion at the more electronegative atom of an ambient anion is
favoured by polar aprotic solvents.” The heterogeneous
O-alkylation (c) is unusual since heterogeneous conditions
usually, for an intermolecular system, favour C-alkylation.®

The conditions used in (a) were expected to give pre-
dominantly O-alkylation, whereas mostly C-alkylation was
observed. The Me,SO solution in (a) became dark crimson,
a colour associated with a dianionic intermediate. If the
dianion (8) is formed, then only one of its possible con-
formations, (8b), can lead to O-alkylation. The W-shaped
conformer (8a) is said to be preferred in aprotic polar solvents
such as Me,SO,® providing a possible explanation for C-
alkylation as the major pathway. Entries (d), (e), and
(f) are according to expectations. Solvation of the oxygen
atom of the enolate increases C-alkylation.

Unexpectedly, entry (g), with thallium ethoxide, a re-
agent reputed to lead to almost exclusive C-alkylation with
B diketones,*® gave predominantly the O-alkylation product.
This observation shows that the reasoning used to explain
C- versus O-alkylation cannot be applied per se to intra-
molecular situations.

Lithium di-isopropylamide, entry (h), in glyme, again
unexpectedly, led to exclusive C-alkylation.q (No O-
alkylation product was detected.) It appears that the
conformation of (5) can vary so markedly with the nature of
the cation and solvent that either C- or O-alkylation may
be observed exclusively under appropriate conditions.!!

All new compounds gave spectral and microanalytical
data in agreement with the proposed structures.
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