Biosynthesis of Montanine

By W. C. WILDMAN* and B. OLESEN (Department of Chemistry, Iowa State University, Ames, Iowa 50011)

Summary It has been shown that Rhodophiala bifida converts O-methyl-(2R)-[2-3H₁,1'-14C]norbelladine (1) into both haemanthamine (2) and montanine (4) with the loss of the pro-R hydrogen of C-2 in (1).

While chemical conversions from the haemanthamine into montanine ring systems have been observed,1 the analogous biosynthetic route has provided contradictory results.2,3

O-Methyl-(2R)-[2-3H₁]norbelladine² was mixed with O-methyl[1'-14C]norbelladine (ratio 3H_1 : ^{14}C , $5\cdot 61\pm 0\cdot 18$) which had been prepared from 3-benzyloxy-4-methoxybromobenzene by carbonation of the Grignard reagent with ¹⁴CO₂ and subsequent standard transformations. doubly labelled (1) was injected as an aqueous solution into bulbs of growing Rhodophiala bifida. After a two-week period, the bulbs were processed and haemanthamine (2; 3H_1 : 14C , $1\cdot 36\pm 0\cdot 02$) and montanine (4; 3H_1 : 14C , $1\cdot 31\pm 0\cdot 06$) were isolated. This represents a loss of 76 and 77% of the tritium present at C-2 in (1) when transformed into haemanthamine and montanine, respectively. The residual tritium in both compounds is attributed to partial racemization which occurred during the synthesis² and was shown to be located at C-11 in (2) by oxidizing (2) with CrO₃-pyridine. The resulting oxohaemanthamine (3; ${}^{3}H_{1}$: ${}^{14}C$, 0.023) retained <2% of the tritium present in **(2)**.

The above data show that the biological conversion of $O\text{-methyl-}(2R)\text{-}[2\text{-}^3\mathrm{H}_1,1'\text{-}^{14}\mathrm{C}] norbelladine into haemanth$ amine and montanine occurs with the loss of the pro-R

hydrogen of C-2 in (1). These data are consistent with the reported biosynthesis of haemanthamine in various Amaryllidaceae.2,3 This contradicts the reported biosynthesis of montanine in Haemanthus coccineus.4

(Received, 22nd April 1976; Com. 448.)

- ¹ Y. Inubushi, H. M. Fales, E. W. Warnhoff, and W. C. Wildman, J. Org. Chem., 1960, 25, 2153.
- ² A. R. Battersby, J. E. Kelsey, and J. Staunton, *Chem. Comm.*, 1971, 183.
 ³ G. W. Kirby and J. Michael, *Chem. Comm.*, 1971, 187 and 415; C. Fuganti, D. Ghiringhelli, and P. Grasselli, *J.C.S. Chem. Comm.*, 1974, 350.
 - ⁴ C. Fuganti, D. Ghiringhelli, and P. Grasselli, J.C.S. Chem. Comm., 1972, 1152; 1973, 430.