Crystal and Molecular Structure of D-*threo*-Hexo-2,5-diulose; Dimeric Form in the Solid State

By LARS KR. HANSEN, ASBJØRN HORDVIK,* and ROLF HOVE

(Department of Chemistry, Institute for Mathematical and Physical Sciences, University of Tromsø, Box 790, 9001 Tromsø, Norway)

Summary In the crystalline state D-threo-hexo-2,5-diulose forms a dimer between a furanose form and a pyranose form of the sugar.

D-threo-HEXO-2,5-DIULOSE (1) is obtained as a metabolic product of acetic acid bacteria utilizing D-fructose or L-sorbose¹ and also as a bromine oxidation product of these sugars.² Molecular weight determination by a freezing point depression method shows that the compound occurs as a monomer in solution.¹ I.r. and n.m.r. spectra indicate that the sugar does not have free carbonyl groups, and the structure shown in Figure 1 (a) has been proposed as that most likely to be formed.³ It contains two pyranose and one dioxan rings, all in the boat form.

The molecular structure of (1) has now been studied in the crystalline state by X-ray methods [see Figure 1 (b) and Figure 2]. It forms dimers which contain a furanose form as well as a pyranose form of the sugar, interconnected through C-O-C bonds. The bond lengths and angles are normal for such compounds.

FIGURE 1. (a) Structure of D-threo-hexo-2,5-diulose previously proposed; (b) solid-state structure found in the present study.

TABLE. Atomic co-ordinates in fractions of corresponding cell edges with standard deviations in parentheses.

0		-	
Atom	x	у	Z
O(1)	0.2269(2)	0.0830(1)	0.4186(6)
O(2)	0.3279(2)	0.1070(1)	0.8721(5)
O(3)	0.4475(2)	-0.0025(1)	0.9442(6)
O(4)	0.6564(2)	0.0456(1)	1.0215(5)
O(5)	0.6736(2)	0.1766(1)	0.9496(5)
O(6)	0.4425(2)	0.1346(1)	0.5382(5)
O(11)	0.7032(2)	0.2933(1)	0.7346(6)
O(12)	0.8648(2)	0.1623(1)	0.9522(4)
O(13)	0.6814(2)	0.1144(1)	0.6059(4)
O(14)	0.9535(2)	0.1711(1)	0.4332(5)
O(15)	0.8715(2)	0.0552(1)	0.8852(6)
O(16)	1.0931(2)	0.1667(1)	0.8339(6)
C(1)	0.3253(3)	0.0503(2)	0.4823(8)
C(2)	0.3935(3)	0.0850(2)	0.6743(7)
C(3)	0.4863(3)	0.0447(2)	0.7834(7)
C(4)	0.5659(3)	0.0821(2)	0.9441(8)
C(5)	0.6097(3)	0.1361(2)	0.7939(6)
C(6)	0.5133(3)	0.1725(2)	0.6845(8)
C(11)	0.7929(3)	0.2597(2)	0.8365(8)
C(12)	0.7728(3)	0.1905(1)	0.8263(6)
C(13)	0.7654(3)	0.1591(1)	0.5705(7)
C(14)	0.8764(3)	0.1276(2)	0.5352(7)
C(15)	0·9108(3)	0.1135(2)	0.8058(7)
C(16)	1.0356(3)	0.1100(2)	0.8632(8)
. /		· · ·	• • •

573

Crystal data: compound (1), C12H28O12, colourless needles, elongated along c, orthorhombic, space group $P2_12_12_1$ with unit cell dimensions a = 12.094(3), b = 21.700(6), c =5.329(3) Å. There are four dimer molecules per unit cell, $D_{\rm c} = 1.692$, $D_{\rm m} = 1.68$ g cm⁻³.

FIGURE 2. X-Ray structure of D-threo-hexo-2,5-diulose.

Using Mo- K_{α} radiation, 1443 out of 2174 independent reflections in the range $0 < \theta < 27^{\circ}$ for which $I \ge 2\sigma(I)$ were accepted as observed. The structure was solved by direct methods (MULTAN)⁴ and refined by full-matrix least squares. With anisotropic temperature coefficients. for carbon and oxygen and isotropic for hydrogen the final R is 0.04.

The co-ordinates of the oxygen and carbon atoms are given in the Table.

We thank Dr. Erik Jantzen, National Institute of Public Health, Oslo, Norway, for a sample of (1).

(Received, 30th April 1976; Com. 478.)

¹O. Terada, K. Tomizava, S. Suzuki, and S. Kinoshita, J. Agric. Chem. Soc. Japan, 1960, 24, 535. ²G. C. Whiting and R. A. Coggins, Chem. and Ind., 1963, 1925.

³ S. England, G. Avigad and L. Prosky, J. Biol. Chem., 1965, 240, 2302.

⁴ P. Main, M. M. Woolfson, and G. Germain, MULTAN: A Computer Program for the Automatic Solution of Crystal Structures, Department of Physics, University of York, 1971.