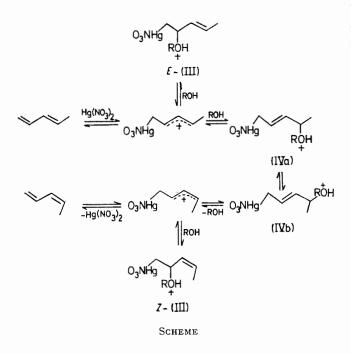
1,4-Oxymercuration

By A. J. Bloodworth,* M. G. Hutchings, and Adam J. Sotowicz


(Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ)

Summary 1,4-Oxymercuration is unambiguously demonstrated by formation of the compound $ClHgCH_2CH$: CHCH(OMe)Me from penta-1,3-diene and mercury(II) nitrate in methanol and shown to be reversible by Z-Eisomerisation of the diene.

THERE is no direct evidence that oxymercuration of conjugated dienes can proceed by 1,4-addition. Such a process has been suggested to account for certain products obtained after subsequent demercuration,¹ but in each case alternative interpretations are possible. Where oxymercurials have been isolated and their structures determined they are, without exception, products of 1,2-addition.² We now report the identification by ¹H n.m.r. spectroscopy of the first 1,4-adduct, and present stereochemical evidence which establishes that the 1,4-oxymercuration is reversible.

Penta-1,3-diene (20 mmol) in CH_2Cl_2 (5 cm³) was added to $Hg(NO_3)_2H_2O$ (10 mmol) in MeOH (20 cm³) and the mixture was shaken. After 5 min the clear solution gave a negative test (NaOH) for Hg^{2+} and was poured into aqueous

KCl (10 mmol in 50 cm³). Extraction with CH₂Cl₂ afforded in 89% yield a mixture of the 1,4-adduct (I) and the 1,2adduct (II) in the ratio 2:1 (equation 1); the same ratio was

obtained after a reaction time of 1 h. The products were separated by chromatography on silica gel.

$$\begin{array}{c} Hg(NO_3)_2 \quad Cl^-\\ CH_2: CHCH: CHMe \xrightarrow{} MeOH \\ CHCH(OMe)Me + ClHgCH_2CH(OMe)CH: CHMe \\ (I) \\ (II) \end{array}$$
(1)

The structures of the adducts were established by comparing their ¹H n.m.r. spectra with those of model compounds.[†] In particular, the CH₂ and Me protons of the 1,4-adduct appear at τ 7.25 br (d, ³J 8 Hz) and 8.78 (d, ³J 6 Hz) respectively, while the corresponding groups in the 1,2-adduct are at τ 7.80 (AB part of the ABX system, J_{AB} 11.8 Hz) and 8.28 (dd, ${}^{3}J$ 6.2 and ${}^{4}J$ -1.4 Hz). In compounds of the type XHgCH2CH:CHR3 the CH2 protons resonate in the range τ 7.04-7.44 (³J ca. 9 Hz) while in simple methoxymercurials such as ClHgCH₂CH(OMe)Me,⁴ they appear as the AB part of an ABX pattern at τ 7.74. The Me^a and Me^b protons in the compounds Me^aCH(OMe)

CX: CHMe^b provide good models for the corresponding nuclei in the 1,4- or 1,2-adduct and appear at τ 8.78-8.87 (d, ³J ca. 6.3 Hz) and 8.03-8.34 (d, ³J ca. 6.0 Hz) respectively;5 in several compounds containing the group -CH: CH-Me, ${}^{4}J = ca. -1.5$ Hz.⁶

The chemical shifts and spin-spin coupling patterns of the remaining resonances are consistent with the proposed structures and an E-stereochemistry is indicated for each adduct by values of ca. 15 Hz for $J_{CH;CH}$. Structural assignments are strongly supported by the values of ¹³C chemical shifts and 199Hg-13C coupling constants; 13C n.m.r. spectroscopy also reveals that the Z-1,2-adduct is a minor component of the product mixture.

If mercury(II) acetate is used the product is exclusively the 1,2-adduct, but addition of 4 mol % of HNO₈ brings about conversion into the same mixture of isomers as that formed in the reaction with mercury(II) nitrate. Thus the 1,2-adduct must be formed faster than the 1,4-adduct, the latter being produced only under conditions of thermodynamic control. The rate of deoxymercuration by HOAc is slow, but with HNO₃ it is sufficiently rapid to permit the equilibration to take place.

Thus we envisage the series of equilibria shown in the Scheme, the 1,2- and 1,4-adducts arising by deprotonation of (III) and (IV) (R = Me) respectively. The Z-1,4-adduct can only arise from energetically less favourable $Z_{,E}$ - and Z, Z-cations [formed from *cisoid* conformations of the dienes or alternative conformations about the C(2)-C(3) bonds of the protonated 1.2-adducts].

A consequence of this Scheme is that rotation about the C(3)-C(4) bond of the 1,4-adduct (IVa \rightleftharpoons IVb) should provide a pathway for ready isomerisation of the diene, and isomerisation was confirmed by g.l.c. analysis of the reaction mixture. In an independent experiment, a mixture of Z- and E-penta-1,3-diene in the ratio 17:83 was produced rapidly (<25 min) when the *E*-isomer in dichloromethane was shaken with 1 equiv. of $Hg(NO_3)_2 \cdot H_2O$ (R = H in the Scheme); the same mixture could be obtained after 5 days using only 4 mol % of Hg(NO₃)₃·H₂O. This is the thermal equilibrium mixture under these conditions since an identical mixture was obtained from the Z-isomer.

These data provide support for the proposed Scheme since it is well established that oxymercuration-deoxymercuration does not lead to isomerisation of simple medial alkenes,7 and isomerisation via direct conversion of the E,E- into the E,Z-cation would have a higher activation energy.8

(Received, 14th May 1976; Com. 545.)

+ Compounds (I) and (II) are oils at room temperature and their characterisation by n.m.r. spectroscopy is by far the most diagnostic.

- ¹ H. Arzoumanian, and J. Metzger, Synthesis, 1971, 527.
 ² H. Straub, K. P. Zeller, and H. Leditschke, 'Houben-Weyl, Methoden der Organischen Chemié,' Band XIII/2b Metallorganische Verbindungen: Hg, Georg Thieme Verlag, Stuttgart, 1974, p. 190.
 ³ W. Kitching, M. Bullpitt, P. D. Sleezer, S. Winstein, and W. G. Young, J. Organometallic Chem., 1972, 34, 233.
 ⁴ S. Brownstein, Discuss. Faraday Soc., 1962, 34, 25.
 ⁵ W. S. Linn, W. L. Waters, and M. C. Caserio, J. Amer. Chem. Soc., 1970, 92, 4018.
 ⁶ L. M. Jackman and S. Sternhell, 'Applications of N.M.R. Spectroscopy in Organic Chemistry,' Pergamon, Oxford, 1969.
 ⁷ W. Kitching, Organometallic Chem. Rev. (A), 1968. 3, 61.

- ⁷ W. Kitching, Organometallic Chem. Rev. (A), 1968, 3, 61.
- ⁸ P. v. R. Schleyer, T. M. Su, M. Saunders, and J. C. Rosenfeld, J. Amer. Chem. Soc., 1969, 91, 5174.