Application of Organoselenium Chemistry to the Total Synthesis of (\pm)-Tuberiferine

By Paul A. Grieco* and Mugio Nishizawa
(Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260)

Summary The total synthesis of (\pm)-tuberiferine (2) is reported which employs the simultaneous introduction of the $\Delta^{1,2}$ double bond and the α-methylene unit via oxidation of the bis-selenide (1).
α-Methylene lactones can be prepared in high yield under mild conditions from appropriately substituted α-methyl- α-phenylseleno lactones. ${ }^{1}$ The method is based on the well known fact that enolates react rapidly with phenylselenenyl chloride or diphenyl diselenide ${ }^{2}$ and that alkyl phenyl selenoxides readily undergo syn elimination. ${ }^{3}$ We report the application of organoselenium chemistry to the total synthesis of (\pm)-tuberiferine (2) via the key bisselenenylated intermediate (1). In addition we demonstrate

that α-methyl- α-phenylseleno lactones serve as protected α-methylene lactones which allow further chemical transformations within the same molecule. (+)-Tuberiferine, isolated from Sonchus Tuberifer Svent (compositae) ${ }^{4}$ has recently been synthesized from (-)- α-santonin. ${ }^{5}$

Acetalization of compound (3), obtained in 85% yield by the procedure of Heathcock and McMurry, ${ }^{6}$ gave the olefin

(3)

(5) $\mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=\mathrm{H}$
(6) $R^{1} R^{2}=0$

(10)

(4)

(7) $R^{1}=R^{2}=H$
(8) $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H}$
(9) $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

(11) $R^{1}=R^{2}=\mathrm{H}_{2} R^{3}=-\mathrm{O}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{O}^{-}$
(12) $\mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H}_{3} \mathrm{R}^{3}=-\mathrm{O}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{O}-$
(13) $R^{1}=\mathrm{PhSe}_{i} \mathrm{R}^{2}=\mathrm{Me}_{i} \mathrm{R}^{3}=0$
(4) in 56% isolated yield. Hydroboration of (4) provided in 90% yield the cis-decalol (5) which was cxidized with Collins reagent ${ }^{7}$ to the cis-decalone (6). Epimerization ($\mathrm{NaOMe}-\mathrm{MeOH}$, reflux) of (6) afforded the pure trans-decalone (7) in 90% overall yield from (5). Kinetic enolate formation [lithium di-isopropylamide, tetrahydrofuran (THF), $0^{\circ} \mathrm{C}$] followed by the addition of a mixture of methyl bromoacetate and hexamethylphosphoric triamide (HMPA) (1 equiv.) gave the keto ester (8) (62%). Epimerization ($\mathrm{NaOMe}-\mathrm{MeOH}$) of (8) provided a new keto ester which was hydrolysed to the keto acid (9) (95%).

Stereoselective reduction of (9) [Li in liquid $\mathrm{NH}_{3}-\mathrm{THF}$ (4:3)] followed by quenching with $\mathrm{NH}_{4} \mathrm{Cl}$, gave, after esterification, a 70% yield of the crystalline α-hydroxy ester (10), m.p. $114-115{ }^{\circ} \mathrm{C}$. Treatment of (10) with toluene-p-sulphonic acid in refluxing benzene afforded the lactone (11) (89%), m.p. $186-187^{\circ} \mathrm{C}\left[\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1770 \mathrm{~cm}^{-1}\right]$. Monomethylation ${ }^{1}$ of (11) gave the lactone (12) (88%) [m.p. 198-199 ${ }^{\circ} \mathrm{C}$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1774 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 0.94$ $(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{d}), 1.14(3 \mathrm{H}, \mathrm{d})$, and $4.00(5 \mathrm{H}, \mathrm{m})]$.

Selenenylation [diphenyl diselenide-THF-HMPA (l equiv.), $-20^{\circ} \mathrm{C}$] of the lactone enolate derived from (12) followed by treatment with 3 m hydrochloric acid gave stereospecifically the keto selenenylated lactone (13) [m.p. $146-147^{\circ} \mathrm{C}$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1770$ and $1705 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 1.15(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{d}), 1.50(3 \mathrm{H}, \mathrm{s}), 4.33$
$(1 \mathrm{H}, \mathrm{t}, J 10 \mathrm{~Hz})$, and $7 \cdot 2-7 \cdot 8(5 \mathrm{H}, \mathrm{m})]$ in 85% yield. The α-methyl- α-phenylseleno lactone (13) serves as a protected α-methylene lactone and permits further chemical transformations within the same molecule. This is not the case with the corresponding α-phenylselenomethyl lactone. ${ }^{8}$ Introduction of the remaining α-phenylseleno group was accomplished at $-78^{\circ} \mathrm{C}$ by treatment of the preformed ketone enolate (lithium di-isopropylamide-THF, $-78{ }^{\circ} \mathrm{C}$) with phenylselenenyl chloride. A 76\% yield of the bisselenenylated compound (1) $\left[\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1775\right.$ and 1712 $\left.\mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)\right] 1 \cdot 10(3 \mathrm{H}, \mathrm{s}), 1 \cdot 31(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.50$ $(3 \mathrm{H}, \mathrm{s}), 4 \cdot 15(2 \mathrm{H}, \mathrm{m})$, and $7 \cdot 2-7 \cdot 8(10 \mathrm{H}, \mathrm{m})$ was obtained. Oxidation of the bis-selenide (1) with ozone (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ followed by warming to room temperature over 1 h afforded (\pm)-tuberiferine (2) [m.p. 147$148{ }^{\circ} \mathrm{C}$; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1763,1665$, and $1626 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $1.18(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{t}, J 10 \mathrm{~Hz})$, $5.45(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{d}$, $J 3 \mathrm{~Hz}$), and $6.72(\mathrm{lH}, \mathrm{d}, J 10 \mathrm{~Hz})$] in 60% yield whose n.m.r. and i.r. spectra were in accord with published data. ${ }^{5}$

We acknowledge support from the National Cancer Institute, the Shell Development Company, and the Alfred P. Sloan Foundation (P.A.G.).
${ }^{1}$ P. A. Grieco and M. Miyashita, J. Org. Chem., 1974, 39, 120.
${ }^{2}$ H. J. Reich, J. N. Renga, and I. L. Reich, J. Amer. Chem. Soc., 1975, 97, 5434; K. B. Sharpless, R. F. Lauer, and A. Y. Teranish ibid., 1973, 95, 6137.
${ }^{3}$ K. B. Sharpless, M. W. Young, and R. F. Lauer, Tetrahedron Letters, 1973, 1979.
${ }^{4}$ J. B. Barrera, J. L. Bretón, M. Fajordo, and A. G. González, Tetrahedron Letters, 1967, 3475.
${ }^{5}$ K. Yamakawa, K. Nishitani, and T. Tominaga, Tetrahedron Letters, 1975, 2829.
${ }^{6}$ C. H. Heathcock, J. E. Ellis, J. E. McMurry, and A. Coppolino, Tetrahedron Letters, 1971, 4995
${ }^{7}$ R. Ratcliffe and R. Rodehorst, J. Org. Chem., 1970, 35, 4000.
${ }^{8}$ P. A. Grieco and M. Miyashita, Tetrahedron Letters, 1974, 1869.

