General Method for the Synthesis of 2-Methylthio-3-substituted Pyrroles using Keten Dithioacetals

By ARVIND KUMAR, HIRIYAKKANAVAR ILA, and HIRIYAKKANAVAR JUNJAPPA*†
(Medicinal Chemistry Division, Central Drug Research Institute, Lucknow, India)

Summary The 2,3-substituted pyrroles (4) have been prepared by a general method by cyclization in cold ethereal HCl of the methylthio-amino-vinyl compounds (3), which were obtained by condensation of the keten dithioacetals (1) with 2,2-diethoxyethylamine (2).

Although there are several synthetic routes to pyrrole and its derivatives, no method is available for the synthesis

		TABLE		
Compound	Yield/%	Compound	M.p./°C	Yielda/%
(3a)	55	(4a)	129-130	62
(3b)	59	(4b)	152 - 153	56
(3c)	61	(4c)	156 - 157	54
(3d)	57	(4d)	105 - 106	50
(3e)	59	(4e)	153 - 154	52b
(3f)	58	(4f)	160161	50b
(3g)	61	(4g)	158	58
(3h)	62	$(\mathbf{4h})$	193—194	55

 $^{^{\}mathtt{a}}$ Reaction time 1 h unless otherwise noted. $^{\mathtt{b}}$ Reaction time 2.5 h.

of the hitherto unknown class of pyrroles (4) functionalised in the 2- and 3-positions. We report here a useful synthetic route to these derivatives (4) from (3).

In a general procedure, a solution of compound (3a) \$ [prepared by the reaction of equimolar amounts of $(1a)^2$ and (2) in refluxing EtOH for 25—40 h] in dry ethereal HCl at 10 °C was stirred at room temperature for 1—2.5 h, to give the pyrrole (4a) in 62% yield. The pyrroles (4b-h); were prepared similarly (Table).

- † Present address: Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya, India.
- ‡ All compounds were characterised by i.r., n.m.r., and mass spectral data and elemental analysis.
- § Compounds (3a--h) were oils or low melting solids, purified by passing through a silica gel column.

The method is particularly useful for the synthesis of 3-acyl or -aroyl pyrroles, since none of the known reactions of pyrroles leads to preferential substitution in the 3-position.3 The method can also be extended to N-substituted pyrroles by using the appropriate compound (2).

One of us (A.K.) thanks C.S.I.R., New Delhi, for a junior research fellowship.

(Received, 26th April 1976; Com. 466.)

- ¹ E. Baltazzi and L. I. Krimen, Chem. Rev., 1963, 63, 511; M. A. Khan, K. J. Morgan, and D. P. Morrey, Tetrahedron, 1966, 22, 2095.
- ² S. M. S. Chauhan and H. Junjappa, *Tetrahedron*, in the press.
 ³ S. Gronowitz, A.-B. Hörnfeldt, B. Gestblom, and R. A. Hoffman, *Arkiv. Kemi*, 1961, 18, 151; K. J. Morgan and D. P. Morrey, Tetrahedron, 1966, 22, 57.