Synthesis and X-Ray Structure of an Osmium Carbonyl Anion $[HOs_3(CO)_{10} \cdot O_2C \cdot Os_6(CO)_{17}]^-^{\dagger}$

By Colin R. Eady, John J. Guy, Brian F. G. Johnson, Jack Lewis,* Maria Carlotta Malatesta, and George M. Sheldrick

(University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW)

Summary The reaction of $[Os_6(CO)_{18}]$ with $[Os_3(CO)_{11}H]^$ gives the anion $[HOs_3(CO)_{10} \cdot O_2C \cdot Os_6(CO)_{17}]^-$ which has been fully characterized by a single crystal X-ray diffraction study on the $[(Ph_3P)_2N]^+$ salt. TRIOSMIUM DODECACARBONYL, $[Os_3(CO)_{12}]$, reacts with potassium hydroxide in methanol giving the red anion, $[Os_3(CO)_{11}H]^-$, the $[Me_4N]^+$ and $[(Ph_3P)_2N]^+$ salts of which can be isolated in good yields (70—80%); these have been characterized by microanalysis, and i.r. $[\nu_{c0}(CH_2Cl_2), 2083w,$

† No reprints available.

2021s, 1996s, 1951ms, and 1667w,br cm⁻¹] and ¹H n.m.r. spectroscopy [τ 23.58 (CD₂Cl₂, 40 °C)]. On the basis of these data, [Os₃(CO)₁₁H]⁻ is considered to be isostructural with its iron analogue, [Fe₃(CO)₁₁H]^{-.1} Both osmium salts are stable in the solid state but quickly decompose in solution. Acidification under anhydrous conditions with gaseous hydrogen chloride leads to [Os₃(CO)₁₁H₂]² whereas

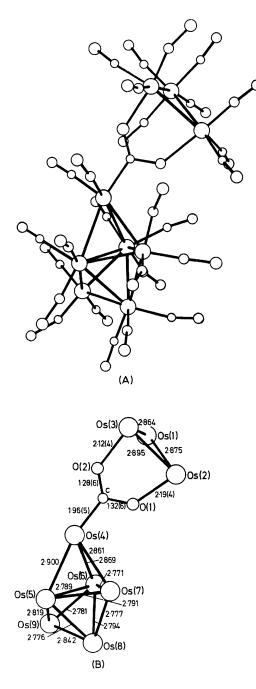


FIGURE. (A): Structure of $[HOs_6(CO)_{10} \cdot Os_6(CO)_{17}]^-$; (B): significant bond lengths (in Å) within the cluster, with CO groups omitted for clarity.

aqueous phosphoric acid transforms the anion into $[Os_3(CO)_{10}(OH)(H)]$.³

In an attempt systematically to increase the cluster size by treating $[Os_6(CO)_{18}]$ with osmium carbonyl anions a stoicheiometric amount of $[Os_3(CO)_{11}H]^-$ was added to $[Os_6(CO)_{18}]$ in CH_2Cl_2 under N_2 . A rapid reaction occurred and an anion of approximate composition $[Os_9(CO)_{\sim 28}H]^$ was isolated in almost quantitative yield as the [(Ph₃P)₂N]+ salt. This salt, which is stable in all common organic solvents apart from acetonitrile, was purified from traces of unchanged reagents by t.l.c. [eluant, cyclohexane-CH₂Cl₂ (10:90)] and recrystallized as brown-black air-stable crystals from a mixture of the same solvents. It was characterized by microanalysis, ¹H n.m.r. [τ 20.24, (CD₂Cl₂, 40 °C)] and i.r. spectroscopy [v_{co} (CH₂Cl₂), 2111vw, 2082mw, 2074m, 2062mw, 2047m, 2028ms, 2013s, 1971vw, and 1961vw cm⁻¹], and a single crystal X-ray diffraction study (see Figure).

Crystal data: $C_{64}H_{31}NO_{29}Os_9P_2$, M = 3051.6, monoclinic, space group $P2_1/c$, a = 18.75(1), b = 15.20(1), c = 28.41(2)Å, $\beta = 114.5(1)^{\circ}$, Z = 4, $D_{\rm m} = 2.756$ g cm⁻³; $D_{\rm c} = 2.751$ g cm⁻³, U = 7367.8 Å³, μ (Mo- K_{α}) = 150.0 cm⁻¹. Data were collected using a Syntex $P2_1$ 4-circle diffractometer with graphite-monochromated Mo- K_{α} radiation. Numerical absorption corrections were applied and the osmium atom positions were determined by multisolution Σ_2 sign expansion. The light atoms were found by difference Fourier techniques and the structure refined to $R_{\rm w} = 0.072$, with anisotropic osmium atoms and isotropic light atoms, for the 3274 reflections with $F > 4\sigma$ (F). The assignment of the carbon and oxygen atoms in the CO₂ bridge was the only model for which temperature factors of these three atoms refined to acceptable values. Dimensions of the cation refined to values similar to those previously reported⁴ for the $[(PPh_3)_2N]^+$ cation $[P-N 1.57(5), 1.60(5) \text{ Å}; \angle P-N-P$ 139(4)°].

The X-ray diffraction study did not show the formation of an Os₉ cluster but rather a complex anion containing discrete Os₆ and Os₃ units linked together by a CO₂ bridge. The Os–Os distances within the Os₆ fragment (σ , 0.005 Å) are similar to those observed for $[Os_6(CO)_{18}]^5$ apart from those associated with Os(4) which are ca. 0.05 Å longer. ¹³C N.m.r. spectra of the anion (ca. 40% ¹³CO) with and without proton decoupling are consistent with the hydride ligand being located on the Os₃ rather than the Os₆ fragment in either a face- or edge-bridging position. The $[HOs_3(CO)_{10}]$ fragment is connected to the $[Os_6(CO)_{17}]$ fragment through an O₂C group forming a ring described by Os(2)-O(1)-C-O(2)-Os(3) with which some electron delocalization and thermodynamic stability could be associated. The mean plane of this ring (maximum deviation 0.07 Å) is almost perpendicular to the plane described by Os(1)-Os(2)-Os(3) (interplanar angle 100.5°). It may be possible to consider the carbon atom of this five membered ring which is bonded to Os(4) as a carbone and within the limits of experimental accuracy appropriate bond lengths satisfy the now well established criteria.⁶ Alternatively [O₂C·Os₆- $(CO)_{17}$] may be bonded to the $[HOs_3(CO)_{10}]$ fragment as a carboxylato ligand.

As far as we are able to judge this is the first example in which two metal clusters are linked together by what is formally a carbon dioxide group. Further evidence in support of this linkage group is provided by three observations: (a) the i.r. spectrum as a Nujol mull of the $[Me_4N]^+$ salt[‡] shows an intense broad absorption at 1270 cm⁻¹ consistent with the expected stretching vibration of a C-O single bond; (b) aqueous acidification produces [Os₃(CO)₁₀-(OH)(H)] and $[Os_6(CO)_{18}]$; (c) the i.r. spectrum as a KBr disc shows no O-H stretching vibrations.

We thank the S.R.C. for financial support, and Trinity

Hall-The Salters' Company and Accademia Nazionale Dei Lincei-Royal Society for the award of Fellowships (to C.R.E. and M.C.M., respectively).

(Received, 21st April 1976; Com. 437.)

 \ddagger The i.r. spectrum of the $[(PPh_3)_2N]^+$ salt is complicated by cation absorptions. The $[Me_4N]^+$ salt was synthesized in a similar manner to that described for the imino-salt but using acetone as solvent and 2:1 CH₂Cl₂-acetone as t.l.c. eluant.

- ¹ L. F. Dahl and J. F. Blount, Inorg. Chem., 1965, 4, 1373.
 ² A. J. Deeming and S. Hasso, J. Organometallic Chem., 1975, 88, C21.
 ³ B. F. G. Johnson, J. Lewis, and P. A. Kilty, J. Chem. Soc. (A), 1968, 2859.
 ⁴ L. B. Handy, J. K. Ruff, and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 7312.
 ⁵ R. Mason, K. M. Thomas, and D. M. P. Mingos, J. Amer. Chem. Soc., 1973, 95, 3802.
 ⁶ D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, 545.